Step | Hyp | Ref
| Expression |
1 | | eleq2 2815 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) |
2 | | raleq 3312 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦)) |
3 | 1, 2 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝑦 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) ↔ (𝑦 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦))) |
4 | 3 | rabbidva2 3421 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦}) |
5 | 4 | unieqd 4918 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∪ {𝑦 ∈ ∅ ∣
∀𝑥 ∈ ∅
¬ 𝑥𝑅𝑦}) |
6 | | rab0 4380 |
. . . . . . . . . 10
⊢ {𝑦 ∈ ∅ ∣
∀𝑥 ∈ ∅
¬ 𝑥𝑅𝑦} = ∅ |
7 | 6 | unieqi 4917 |
. . . . . . . . 9
⊢ ∪ {𝑦
∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∪
∅ |
8 | | uni0 4935 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
9 | 7, 8 | eqtri 2754 |
. . . . . . . 8
⊢ ∪ {𝑦
∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅ |
10 | 5, 9 | eqtrdi 2782 |
. . . . . . 7
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∅) |
11 | | 0ex 5302 |
. . . . . . 7
⊢ ∅
∈ V |
12 | 10, 11 | eqeltrdi 2834 |
. . . . . 6
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
13 | 12 | adantl 480 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 = ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
14 | | ssv 4003 |
. . . . . . . . . . . 12
⊢ 𝑧 ⊆ V |
15 | 14 | jctl 522 |
. . . . . . . . . . 11
⊢ (𝑧 ≠ ∅ → (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) |
16 | | vex 3466 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
17 | 15, 16 | jctil 518 |
. . . . . . . . . 10
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠
∅))) |
18 | | 3anass 1092 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅) ↔ (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠
∅))) |
19 | 17, 18 | sylibr 233 |
. . . . . . . . 9
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) |
20 | | wereu 5668 |
. . . . . . . . 9
⊢ ((𝑅 We V ∧ (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) → ∃!𝑦 ∈ 𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) |
21 | 19, 20 | sylan2 591 |
. . . . . . . 8
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃!𝑦 ∈ 𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) |
22 | | vsnid 4660 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ {𝑤} |
23 | | eleq2 2815 |
. . . . . . . . . . . . 13
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ↔ 𝑤 ∈ {𝑤})) |
24 | 22, 23 | mpbiri 257 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
25 | | elrabi 3674 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} → 𝑤 ∈ 𝑧) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ 𝑧) |
27 | | unieq 4916 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∪ {𝑤}) |
28 | | unisnv 4927 |
. . . . . . . . . . . 12
⊢ ∪ {𝑤}
= 𝑤 |
29 | 27, 28 | eqtrdi 2782 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
30 | 26, 29 | jca 510 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
31 | 30 | eximi 1830 |
. . . . . . . . 9
⊢
(∃𝑤{𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
32 | | reusn 4726 |
. . . . . . . . 9
⊢
(∃!𝑦 ∈
𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 ↔ ∃𝑤{𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤}) |
33 | | df-rex 3061 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑧 ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
34 | 31, 32, 33 | 3imtr4i 291 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 → ∃𝑤 ∈ 𝑧 ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
35 | 21, 34 | syl 17 |
. . . . . . 7
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
36 | | eleq1 2814 |
. . . . . . . . 9
⊢ (∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → (∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧 ↔ 𝑤 ∈ 𝑧)) |
37 | 36 | biimparc 478 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
38 | 37 | rexlimiva 3137 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝑧 ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
39 | 35, 38 | syl 17 |
. . . . . 6
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
40 | 39 | elexd 3485 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
41 | 13, 40 | pm2.61dane 3019 |
. . . 4
⊢ (𝑅 We V → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
42 | 41 | ralrimivw 3140 |
. . 3
⊢ (𝑅 We V → ∀𝑧 ∈ V ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
43 | | wevgblacfn.1 |
. . . 4
⊢ 𝐹 = (𝑧 ∈ V ↦ ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
44 | 43 | fnmpt 6690 |
. . 3
⊢
(∀𝑧 ∈ V
∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V → 𝐹 Fn V) |
45 | 42, 44 | syl 17 |
. 2
⊢ (𝑅 We V → 𝐹 Fn V) |
46 | 43 | fvmpt2 7009 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) → (𝐹‘𝑧) = ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
47 | 16, 39, 46 | sylancr 585 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹‘𝑧) = ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
48 | 47, 39 | eqeltrd 2826 |
. . . 4
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹‘𝑧) ∈ 𝑧) |
49 | 48 | ex 411 |
. . 3
⊢ (𝑅 We V → (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
50 | 49 | alrimiv 1923 |
. 2
⊢ (𝑅 We V → ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
51 | 45, 50 | jca 510 |
1
⊢ (𝑅 We V → (𝐹 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧))) |