| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2824 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) |
| 2 | | raleq 3306 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦)) |
| 3 | 1, 2 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝑦 ∈ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) ↔ (𝑦 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦))) |
| 4 | 3 | rabbidva2 3422 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦}) |
| 5 | 4 | unieqd 4901 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∪ {𝑦 ∈ ∅ ∣
∀𝑥 ∈ ∅
¬ 𝑥𝑅𝑦}) |
| 6 | | rab0 4366 |
. . . . . . . . . 10
⊢ {𝑦 ∈ ∅ ∣
∀𝑥 ∈ ∅
¬ 𝑥𝑅𝑦} = ∅ |
| 7 | 6 | unieqi 4900 |
. . . . . . . . 9
⊢ ∪ {𝑦
∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∪
∅ |
| 8 | | uni0 4916 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
| 9 | 7, 8 | eqtri 2759 |
. . . . . . . 8
⊢ ∪ {𝑦
∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅ |
| 10 | 5, 9 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∅) |
| 11 | | 0ex 5282 |
. . . . . . 7
⊢ ∅
∈ V |
| 12 | 10, 11 | eqeltrdi 2843 |
. . . . . 6
⊢ (𝑧 = ∅ → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
| 13 | 12 | adantl 481 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 = ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
| 14 | | ssv 3988 |
. . . . . . . . . . . 12
⊢ 𝑧 ⊆ V |
| 15 | 14 | jctl 523 |
. . . . . . . . . . 11
⊢ (𝑧 ≠ ∅ → (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) |
| 16 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 17 | 15, 16 | jctil 519 |
. . . . . . . . . 10
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠
∅))) |
| 18 | | 3anass 1094 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅) ↔ (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠
∅))) |
| 19 | 17, 18 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) |
| 20 | | wereu 5655 |
. . . . . . . . 9
⊢ ((𝑅 We V ∧ (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) → ∃!𝑦 ∈ 𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) |
| 21 | 19, 20 | sylan2 593 |
. . . . . . . 8
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃!𝑦 ∈ 𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦) |
| 22 | | vsnid 4644 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ {𝑤} |
| 23 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ↔ 𝑤 ∈ {𝑤})) |
| 24 | 22, 23 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
| 25 | | elrabi 3671 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} → 𝑤 ∈ 𝑧) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ 𝑧) |
| 27 | | unieq 4899 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = ∪ {𝑤}) |
| 28 | | unisnv 4908 |
. . . . . . . . . . . 12
⊢ ∪ {𝑤}
= 𝑤 |
| 29 | 27, 28 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
| 30 | 26, 29 | jca 511 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
| 31 | 30 | eximi 1835 |
. . . . . . . . 9
⊢
(∃𝑤{𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∃𝑤(𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
| 32 | | reusn 4708 |
. . . . . . . . 9
⊢
(∃!𝑦 ∈
𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 ↔ ∃𝑤{𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = {𝑤}) |
| 33 | | df-rex 3062 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑧 ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)) |
| 34 | 31, 32, 33 | 3imtr4i 292 |
. . . . . . . 8
⊢
(∃!𝑦 ∈
𝑧 ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦 → ∃𝑤 ∈ 𝑧 ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
| 35 | 21, 34 | syl 17 |
. . . . . . 7
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃𝑤 ∈ 𝑧 ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) |
| 36 | | eleq1 2823 |
. . . . . . . . 9
⊢ (∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → (∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧 ↔ 𝑤 ∈ 𝑧)) |
| 37 | 36 | biimparc 479 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑧 ∧ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
| 38 | 37 | rexlimiva 3134 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝑧 ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
| 39 | 35, 38 | syl 17 |
. . . . . 6
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) |
| 40 | 39 | elexd 3488 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
| 41 | 13, 40 | pm2.61dane 3020 |
. . . 4
⊢ (𝑅 We V → ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
| 42 | 41 | ralrimivw 3137 |
. . 3
⊢ (𝑅 We V → ∀𝑧 ∈ V ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V) |
| 43 | | wevgblacfn.1 |
. . . 4
⊢ 𝐹 = (𝑧 ∈ V ↦ ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
| 44 | 43 | fnmpt 6683 |
. . 3
⊢
(∀𝑧 ∈ V
∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ V → 𝐹 Fn V) |
| 45 | 42, 44 | syl 17 |
. 2
⊢ (𝑅 We V → 𝐹 Fn V) |
| 46 | 43 | fvmpt2 7002 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ ∪ {𝑦
∈ 𝑧 ∣
∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) → (𝐹‘𝑧) = ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
| 47 | 16, 39, 46 | sylancr 587 |
. . . . 5
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹‘𝑧) = ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) |
| 48 | 47, 39 | eqeltrd 2835 |
. . . 4
⊢ ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹‘𝑧) ∈ 𝑧) |
| 49 | 48 | ex 412 |
. . 3
⊢ (𝑅 We V → (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
| 50 | 49 | alrimiv 1927 |
. 2
⊢ (𝑅 We V → ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
| 51 | 45, 50 | jca 511 |
1
⊢ (𝑅 We V → (𝐹 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧))) |