Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wevgblacfn Structured version   Visualization version   GIF version

Theorem wevgblacfn 34946
Description: If 𝑅 is a well-ordering of the universe, then 𝐹 is a global choice function. Here 𝐹 maps each set 𝑧 to its minimal element with respect to 𝑅 (except when 𝑧 is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). (Contributed by BTernaryTau, 29-Jun-2025.)
Hypothesis
Ref Expression
wevgblacfn.1 𝐹 = (𝑧 ∈ V ↦ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
wevgblacfn (𝑅 We V → (𝐹 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem wevgblacfn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2815 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
2 raleq 3312 . . . . . . . . . . 11 (𝑧 = ∅ → (∀𝑥𝑧 ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦))
31, 2anbi12d 630 . . . . . . . . . 10 (𝑧 = ∅ → ((𝑦𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦) ↔ (𝑦 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦)))
43rabbidva2 3421 . . . . . . . . 9 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦})
54unieqd 4918 . . . . . . . 8 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦})
6 rab0 4380 . . . . . . . . . 10 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅
76unieqi 4917 . . . . . . . . 9 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} =
8 uni0 4935 . . . . . . . . 9 ∅ = ∅
97, 8eqtri 2754 . . . . . . . 8 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅
105, 9eqtrdi 2782 . . . . . . 7 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = ∅)
11 0ex 5302 . . . . . . 7 ∅ ∈ V
1210, 11eqeltrdi 2834 . . . . . 6 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
1312adantl 480 . . . . 5 ((𝑅 We V ∧ 𝑧 = ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
14 ssv 4003 . . . . . . . . . . . 12 𝑧 ⊆ V
1514jctl 522 . . . . . . . . . . 11 (𝑧 ≠ ∅ → (𝑧 ⊆ V ∧ 𝑧 ≠ ∅))
16 vex 3466 . . . . . . . . . . 11 𝑧 ∈ V
1715, 16jctil 518 . . . . . . . . . 10 (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)))
18 3anass 1092 . . . . . . . . . 10 ((𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅) ↔ (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)))
1917, 18sylibr 233 . . . . . . . . 9 (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅))
20 wereu 5668 . . . . . . . . 9 ((𝑅 We V ∧ (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) → ∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦)
2119, 20sylan2 591 . . . . . . . 8 ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦)
22 vsnid 4660 . . . . . . . . . . . . 13 𝑤 ∈ {𝑤}
23 eleq2 2815 . . . . . . . . . . . . 13 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ↔ 𝑤 ∈ {𝑤}))
2422, 23mpbiri 257 . . . . . . . . . . . 12 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
25 elrabi 3674 . . . . . . . . . . . 12 (𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} → 𝑤𝑧)
2624, 25syl 17 . . . . . . . . . . 11 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤𝑧)
27 unieq 4916 . . . . . . . . . . . 12 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤})
28 unisnv 4927 . . . . . . . . . . . 12 {𝑤} = 𝑤
2927, 28eqtrdi 2782 . . . . . . . . . . 11 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
3026, 29jca 510 . . . . . . . . . 10 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
3130eximi 1830 . . . . . . . . 9 (∃𝑤{𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∃𝑤(𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
32 reusn 4726 . . . . . . . . 9 (∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦 ↔ ∃𝑤{𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤})
33 df-rex 3061 . . . . . . . . 9 (∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 ↔ ∃𝑤(𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
3431, 32, 333imtr4i 291 . . . . . . . 8 (∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦 → ∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
3521, 34syl 17 . . . . . . 7 ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
36 eleq1 2814 . . . . . . . . 9 ( {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → ( {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧𝑤𝑧))
3736biimparc 478 . . . . . . . 8 ((𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
3837rexlimiva 3137 . . . . . . 7 (∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
3935, 38syl 17 . . . . . 6 ((𝑅 We V ∧ 𝑧 ≠ ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
4039elexd 3485 . . . . 5 ((𝑅 We V ∧ 𝑧 ≠ ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
4113, 40pm2.61dane 3019 . . . 4 (𝑅 We V → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
4241ralrimivw 3140 . . 3 (𝑅 We V → ∀𝑧 ∈ V {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
43 wevgblacfn.1 . . . 4 𝐹 = (𝑧 ∈ V ↦ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4443fnmpt 6690 . . 3 (∀𝑧 ∈ V {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V → 𝐹 Fn V)
4542, 44syl 17 . 2 (𝑅 We V → 𝐹 Fn V)
4643fvmpt2 7009 . . . . . 6 ((𝑧 ∈ V ∧ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) → (𝐹𝑧) = {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4716, 39, 46sylancr 585 . . . . 5 ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹𝑧) = {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4847, 39eqeltrd 2826 . . . 4 ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐹𝑧) ∈ 𝑧)
4948ex 411 . . 3 (𝑅 We V → (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
5049alrimiv 1923 . 2 (𝑅 We V → ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
5145, 50jca 510 1 (𝑅 We V → (𝐹 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084  wal 1532   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  wrex 3060  ∃!wreu 3362  {crab 3419  Vcvv 3462  wss 3946  c0 4322  {csn 4623   cuni 4905   class class class wbr 5143  cmpt 5226   We wwe 5626   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator