Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wevgblacfn Structured version   Visualization version   GIF version

Theorem wevgblacfn 35225
Description: If 𝑅 is a well-ordering of the universe, then 𝐺 is a global choice function. Here 𝐺 maps each set 𝑧 to its minimal element with respect to 𝑅 (except when 𝑧 is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). This is the ZFC version of (3 1) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 29-Jun-2025.)
Hypothesis
Ref Expression
wevgblacfn.1 𝐺 = (𝑧 ∈ V ↦ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
wevgblacfn (𝑅 We V → (𝐺 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem wevgblacfn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
2 raleq 3290 . . . . . . . . . . 11 (𝑧 = ∅ → (∀𝑥𝑧 ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦))
31, 2anbi12d 632 . . . . . . . . . 10 (𝑧 = ∅ → ((𝑦𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦) ↔ (𝑦 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦)))
43rabbidva2 3398 . . . . . . . . 9 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦})
54unieqd 4873 . . . . . . . 8 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦})
6 rab0 4335 . . . . . . . . . 10 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅
76unieqi 4872 . . . . . . . . 9 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} =
8 uni0 4888 . . . . . . . . 9 ∅ = ∅
97, 8eqtri 2756 . . . . . . . 8 {𝑦 ∈ ∅ ∣ ∀𝑥 ∈ ∅ ¬ 𝑥𝑅𝑦} = ∅
105, 9eqtrdi 2784 . . . . . . 7 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = ∅)
11 0ex 5249 . . . . . . 7 ∅ ∈ V
1210, 11eqeltrdi 2841 . . . . . 6 (𝑧 = ∅ → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
1312adantl 481 . . . . 5 ((𝑅 We V ∧ 𝑧 = ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
14 ssv 3955 . . . . . . . . . . . 12 𝑧 ⊆ V
1514jctl 523 . . . . . . . . . . 11 (𝑧 ≠ ∅ → (𝑧 ⊆ V ∧ 𝑧 ≠ ∅))
16 vex 3441 . . . . . . . . . . 11 𝑧 ∈ V
1715, 16jctil 519 . . . . . . . . . 10 (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)))
18 3anass 1094 . . . . . . . . . 10 ((𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅) ↔ (𝑧 ∈ V ∧ (𝑧 ⊆ V ∧ 𝑧 ≠ ∅)))
1917, 18sylibr 234 . . . . . . . . 9 (𝑧 ≠ ∅ → (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅))
20 wereu 5617 . . . . . . . . 9 ((𝑅 We V ∧ (𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅)) → ∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦)
2119, 20sylan2 593 . . . . . . . 8 ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦)
22 vsnid 4617 . . . . . . . . . . . . 13 𝑤 ∈ {𝑤}
23 eleq2 2822 . . . . . . . . . . . . 13 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ↔ 𝑤 ∈ {𝑤}))
2422, 23mpbiri 258 . . . . . . . . . . . 12 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
25 elrabi 3639 . . . . . . . . . . . 12 (𝑤 ∈ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} → 𝑤𝑧)
2624, 25syl 17 . . . . . . . . . . 11 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → 𝑤𝑧)
27 unieq 4871 . . . . . . . . . . . 12 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤})
28 unisnv 4880 . . . . . . . . . . . 12 {𝑤} = 𝑤
2927, 28eqtrdi 2784 . . . . . . . . . . 11 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
3026, 29jca 511 . . . . . . . . . 10 ({𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → (𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
3130eximi 1836 . . . . . . . . 9 (∃𝑤{𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤} → ∃𝑤(𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
32 reusn 4681 . . . . . . . . 9 (∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦 ↔ ∃𝑤{𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = {𝑤})
33 df-rex 3058 . . . . . . . . 9 (∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 ↔ ∃𝑤(𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤))
3431, 32, 333imtr4i 292 . . . . . . . 8 (∃!𝑦𝑧𝑥𝑧 ¬ 𝑥𝑅𝑦 → ∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
3521, 34syl 17 . . . . . . 7 ((𝑅 We V ∧ 𝑧 ≠ ∅) → ∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤)
36 eleq1 2821 . . . . . . . . 9 ( {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 → ( {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧𝑤𝑧))
3736biimparc 479 . . . . . . . 8 ((𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
3837rexlimiva 3126 . . . . . . 7 (∃𝑤𝑧 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} = 𝑤 {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
3935, 38syl 17 . . . . . 6 ((𝑅 We V ∧ 𝑧 ≠ ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧)
4039elexd 3461 . . . . 5 ((𝑅 We V ∧ 𝑧 ≠ ∅) → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
4113, 40pm2.61dane 3016 . . . 4 (𝑅 We V → {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
4241ralrimivw 3129 . . 3 (𝑅 We V → ∀𝑧 ∈ V {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V)
43 wevgblacfn.1 . . . 4 𝐺 = (𝑧 ∈ V ↦ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4443fnmpt 6629 . . 3 (∀𝑧 ∈ V {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ V → 𝐺 Fn V)
4542, 44syl 17 . 2 (𝑅 We V → 𝐺 Fn V)
4643fvmpt2 6949 . . . . . 6 ((𝑧 ∈ V ∧ {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦} ∈ 𝑧) → (𝐺𝑧) = {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4716, 39, 46sylancr 587 . . . . 5 ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐺𝑧) = {𝑦𝑧 ∣ ∀𝑥𝑧 ¬ 𝑥𝑅𝑦})
4847, 39eqeltrd 2833 . . . 4 ((𝑅 We V ∧ 𝑧 ≠ ∅) → (𝐺𝑧) ∈ 𝑧)
4948ex 412 . . 3 (𝑅 We V → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
5049alrimiv 1928 . 2 (𝑅 We V → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
5145, 50jca 511 1 (𝑅 We V → (𝐺 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  {crab 3396  Vcvv 3437  wss 3898  c0 4282  {csn 4577   cuni 4860   class class class wbr 5095  cmpt 5176   We wwe 5573   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator