Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zltp1ne Structured version   Visualization version   GIF version

Theorem zltp1ne 32577
Description: Integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.)
Assertion
Ref Expression
zltp1ne ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵𝐵 ≠ (𝐴 + 1))))

Proof of Theorem zltp1ne
StepHypRef Expression
1 zre 12025 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 zre 12025 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 peano2re 10852 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
4 ltlen 10780 . . . 4 (((𝐴 + 1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 1) < 𝐵 ↔ ((𝐴 + 1) ≤ 𝐵𝐵 ≠ (𝐴 + 1))))
53, 4sylan 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 1) < 𝐵 ↔ ((𝐴 + 1) ≤ 𝐵𝐵 ≠ (𝐴 + 1))))
61, 2, 5syl2an 599 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ ((𝐴 + 1) ≤ 𝐵𝐵 ≠ (𝐴 + 1))))
7 zltp1le 12072 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵))
87anbi1d 633 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐵 ≠ (𝐴 + 1)) ↔ ((𝐴 + 1) ≤ 𝐵𝐵 ≠ (𝐴 + 1))))
96, 8bitr4d 285 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵𝐵 ≠ (𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wcel 2112  wne 2952   class class class wbr 5033  (class class class)co 7151  cr 10575  1c1 10577   + caddc 10579   < clt 10714  cle 10715  cz 12021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-n0 11936  df-z 12022
This theorem is referenced by:  nnltp1ne  32578  nn0ltp1ne  32579
  Copyright terms: Public domain W3C validator