MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem8 Structured version   Visualization version   GIF version

Theorem hsmexlem8 10353
Description: Lemma for hsmex 10361. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem8 (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑎
Allowed substitution hints:   𝐻(𝑧,𝑎)   𝑋(𝑎)

Proof of Theorem hsmexlem8
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fvex 6853 . 2 (har‘𝒫 (𝑋 × (𝐻𝑎))) ∈ V
2 hsmexlem7.h . . 3 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3 xpeq2 5652 . . . . 5 (𝑏 = 𝑧 → (𝑋 × 𝑏) = (𝑋 × 𝑧))
43pweqd 4576 . . . 4 (𝑏 = 𝑧 → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × 𝑧))
54fveq2d 6844 . . 3 (𝑏 = 𝑧 → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × 𝑧)))
6 xpeq2 5652 . . . . 5 (𝑏 = (𝐻𝑎) → (𝑋 × 𝑏) = (𝑋 × (𝐻𝑎)))
76pweqd 4576 . . . 4 (𝑏 = (𝐻𝑎) → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × (𝐻𝑎)))
87fveq2d 6844 . . 3 (𝑏 = (𝐻𝑎) → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
92, 5, 8frsucmpt2 8385 . 2 ((𝑎 ∈ ω ∧ (har‘𝒫 (𝑋 × (𝐻𝑎))) ∈ V) → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
101, 9mpan2 691 1 (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  𝒫 cpw 4559  cmpt 5183   × cxp 5629  cres 5633  suc csuc 6322  cfv 6499  ωcom 7822  reccrdg 8354  harchar 9485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355
This theorem is referenced by:  hsmexlem9  10354  hsmexlem4  10358
  Copyright terms: Public domain W3C validator