| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10446. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
| Ref | Expression |
|---|---|
| hsmexlem8 | ⊢ (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . 2 ⊢ (har‘𝒫 (𝑋 × (𝐻‘𝑎))) ∈ V | |
| 2 | hsmexlem7.h | . . 3 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
| 3 | xpeq2 5675 | . . . . 5 ⊢ (𝑏 = 𝑧 → (𝑋 × 𝑏) = (𝑋 × 𝑧)) | |
| 4 | 3 | pweqd 4592 | . . . 4 ⊢ (𝑏 = 𝑧 → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × 𝑧)) |
| 5 | 4 | fveq2d 6880 | . . 3 ⊢ (𝑏 = 𝑧 → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × 𝑧))) |
| 6 | xpeq2 5675 | . . . . 5 ⊢ (𝑏 = (𝐻‘𝑎) → (𝑋 × 𝑏) = (𝑋 × (𝐻‘𝑎))) | |
| 7 | 6 | pweqd 4592 | . . . 4 ⊢ (𝑏 = (𝐻‘𝑎) → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × (𝐻‘𝑎))) |
| 8 | 7 | fveq2d 6880 | . . 3 ⊢ (𝑏 = (𝐻‘𝑎) → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
| 9 | 2, 5, 8 | frsucmpt2 8454 | . 2 ⊢ ((𝑎 ∈ ω ∧ (har‘𝒫 (𝑋 × (𝐻‘𝑎))) ∈ V) → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
| 10 | 1, 9 | mpan2 691 | 1 ⊢ (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 suc csuc 6354 ‘cfv 6531 ωcom 7861 reccrdg 8423 harchar 9570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
| This theorem is referenced by: hsmexlem9 10439 hsmexlem4 10443 |
| Copyright terms: Public domain | W3C validator |