MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem8 Structured version   Visualization version   GIF version

Theorem hsmexlem8 9581
Description: Lemma for hsmex 9589. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem8 (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑎
Allowed substitution hints:   𝐻(𝑧,𝑎)   𝑋(𝑎)

Proof of Theorem hsmexlem8
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fvex 6459 . 2 (har‘𝒫 (𝑋 × (𝐻𝑎))) ∈ V
2 hsmexlem7.h . . 3 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3 xpeq2 5376 . . . . 5 (𝑏 = 𝑧 → (𝑋 × 𝑏) = (𝑋 × 𝑧))
43pweqd 4383 . . . 4 (𝑏 = 𝑧 → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × 𝑧))
54fveq2d 6450 . . 3 (𝑏 = 𝑧 → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × 𝑧)))
6 xpeq2 5376 . . . . 5 (𝑏 = (𝐻𝑎) → (𝑋 × 𝑏) = (𝑋 × (𝐻𝑎)))
76pweqd 4383 . . . 4 (𝑏 = (𝐻𝑎) → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × (𝐻𝑎)))
87fveq2d 6450 . . 3 (𝑏 = (𝐻𝑎) → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
92, 5, 8frsucmpt2 7818 . 2 ((𝑎 ∈ ω ∧ (har‘𝒫 (𝑋 × (𝐻𝑎))) ∈ V) → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
101, 9mpan2 681 1 (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  Vcvv 3397  𝒫 cpw 4378  cmpt 4965   × cxp 5353  cres 5357  suc csuc 5978  cfv 6135  ωcom 7343  reccrdg 7788  harchar 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789
This theorem is referenced by:  hsmexlem9  9582  hsmexlem4  9586
  Copyright terms: Public domain W3C validator