![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem8 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10501. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
Ref | Expression |
---|---|
hsmexlem8 | ⊢ (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . 2 ⊢ (har‘𝒫 (𝑋 × (𝐻‘𝑎))) ∈ V | |
2 | hsmexlem7.h | . . 3 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
3 | xpeq2 5721 | . . . . 5 ⊢ (𝑏 = 𝑧 → (𝑋 × 𝑏) = (𝑋 × 𝑧)) | |
4 | 3 | pweqd 4639 | . . . 4 ⊢ (𝑏 = 𝑧 → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × 𝑧)) |
5 | 4 | fveq2d 6924 | . . 3 ⊢ (𝑏 = 𝑧 → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × 𝑧))) |
6 | xpeq2 5721 | . . . . 5 ⊢ (𝑏 = (𝐻‘𝑎) → (𝑋 × 𝑏) = (𝑋 × (𝐻‘𝑎))) | |
7 | 6 | pweqd 4639 | . . . 4 ⊢ (𝑏 = (𝐻‘𝑎) → 𝒫 (𝑋 × 𝑏) = 𝒫 (𝑋 × (𝐻‘𝑎))) |
8 | 7 | fveq2d 6924 | . . 3 ⊢ (𝑏 = (𝐻‘𝑎) → (har‘𝒫 (𝑋 × 𝑏)) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
9 | 2, 5, 8 | frsucmpt2 8496 | . 2 ⊢ ((𝑎 ∈ ω ∧ (har‘𝒫 (𝑋 × (𝐻‘𝑎))) ∈ V) → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
10 | 1, 9 | mpan2 690 | 1 ⊢ (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 ↦ cmpt 5249 × cxp 5698 ↾ cres 5702 suc csuc 6397 ‘cfv 6573 ωcom 7903 reccrdg 8465 harchar 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: hsmexlem9 10494 hsmexlem4 10498 |
Copyright terms: Public domain | W3C validator |