|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xpsfrn | Structured version Visualization version GIF version | ||
| Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| Ref | Expression | 
|---|---|
| xpsfrn | ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 2 | 1 | xpsff1o 17612 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | 
| 3 | f1ofo 6855 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) | |
| 4 | forn 6823 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∅c0 4333 ifcif 4525 {cpr 4628 〈cop 4632 × cxp 5683 ran crn 5686 –onto→wfo 6559 –1-1-onto→wf1o 6560 ∈ cmpo 7433 1oc1o 8499 2oc2o 8500 Xcixp 8937 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-2o 8507 df-ixp 8938 df-en 8986 df-fin 8989 | 
| This theorem is referenced by: xpsrnbas 17616 | 
| Copyright terms: Public domain | W3C validator |