| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfrn | Structured version Visualization version GIF version | ||
| Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsfrn | ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 2 | 1 | xpsff1o 17530 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| 3 | f1ofo 6807 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) | |
| 4 | forn 6775 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 ifcif 4488 {cpr 4591 〈cop 4595 × cxp 5636 ran crn 5639 –onto→wfo 6509 –1-1-onto→wf1o 6510 ∈ cmpo 7389 1oc1o 8427 2oc2o 8428 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-ixp 8871 df-en 8919 df-fin 8922 |
| This theorem is referenced by: xpsrnbas 17534 |
| Copyright terms: Public domain | W3C validator |