MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrss Structured version   Visualization version   GIF version

Theorem infxrss 13401
Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
infxrss ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))

Proof of Theorem infxrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ*)
2 simpl 482 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴𝐵)
32sselda 4008 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥𝐵)
4 infxrlb 13396 . . . 4 ((𝐵 ⊆ ℝ*𝑥𝐵) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
51, 3, 4syl2anc 583 . . 3 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
65ralrimiva 3152 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥)
7 sstr 4017 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
8 infxrcl 13395 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
98adantl 481 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
10 infxrgelb 13397 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐵, ℝ*, < ) ∈ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
117, 9, 10syl2anc 583 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
126, 11mpbird 257 1 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  infcinf 9510  *cxr 11323   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  infxrpnf  45361  ioossioobi  45435  liminflelimsuplem  45696  ovnsslelem  46481  ovolval5lem3  46575
  Copyright terms: Public domain W3C validator