MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrss Structured version   Visualization version   GIF version

Theorem infxrss 13358
Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
infxrss ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))

Proof of Theorem infxrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ*)
2 simpl 481 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴𝐵)
32sselda 3982 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥𝐵)
4 infxrlb 13353 . . . 4 ((𝐵 ⊆ ℝ*𝑥𝐵) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
51, 3, 4syl2anc 582 . . 3 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
65ralrimiva 3143 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥)
7 sstr 3990 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
8 infxrcl 13352 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
98adantl 480 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
10 infxrgelb 13354 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐵, ℝ*, < ) ∈ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
117, 9, 10syl2anc 582 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
126, 11mpbird 256 1 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3058  wss 3949   class class class wbr 5152  infcinf 9472  *cxr 11285   < clt 11286  cle 11287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485
This theorem is referenced by:  infxrpnf  44857  ioossioobi  44931  liminflelimsuplem  45192  ovnsslelem  45977  ovolval5lem3  46071
  Copyright terms: Public domain W3C validator