| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1b | Unicode version | ||
| Description: Lemma 2 for 2lgslem1 15735. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1b.i |
|
| 2lgslem1b.f |
|
| Ref | Expression |
|---|---|
| 2lgslem1b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem1b.f |
. . . 4
| |
| 2 | eqeq1 2216 |
. . . . . 6
| |
| 3 | 2 | rexbidv 2511 |
. . . . 5
|
| 4 | elfzelz 10189 |
. . . . . . 7
| |
| 5 | 2lgslem1b.i |
. . . . . . 7
| |
| 6 | 4, 5 | eleq2s 2304 |
. . . . . 6
|
| 7 | 2z 9442 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | 6, 8 | zmulcld 9543 |
. . . . 5
|
| 10 | id 19 |
. . . . . 6
| |
| 11 | oveq1 5981 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2221 |
. . . . . . 7
|
| 13 | 12 | adantl 277 |
. . . . . 6
|
| 14 | eqidd 2210 |
. . . . . 6
| |
| 15 | 10, 13, 14 | rspcedvd 2893 |
. . . . 5
|
| 16 | 3, 9, 15 | elrabd 2941 |
. . . 4
|
| 17 | 1, 16 | fmpti 5760 |
. . 3
|
| 18 | oveq1 5981 |
. . . . . . 7
| |
| 19 | simpl 109 |
. . . . . . 7
| |
| 20 | elfzelz 10189 |
. . . . . . . . . 10
| |
| 21 | 20, 5 | eleq2s 2304 |
. . . . . . . . 9
|
| 22 | id 19 |
. . . . . . . . . 10
| |
| 23 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 22, 23 | zmulcld 9543 |
. . . . . . . . 9
|
| 25 | 21, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | 1, 18, 19, 26 | fvmptd3 5701 |
. . . . . 6
|
| 28 | oveq1 5981 |
. . . . . . 7
| |
| 29 | simpr 110 |
. . . . . . 7
| |
| 30 | elfzelz 10189 |
. . . . . . . . . 10
| |
| 31 | 30, 5 | eleq2s 2304 |
. . . . . . . . 9
|
| 32 | 7 | a1i 9 |
. . . . . . . . 9
|
| 33 | 31, 32 | zmulcld 9543 |
. . . . . . . 8
|
| 34 | 33 | adantl 277 |
. . . . . . 7
|
| 35 | 1, 28, 29, 34 | fvmptd3 5701 |
. . . . . 6
|
| 36 | 27, 35 | eqeq12d 2224 |
. . . . 5
|
| 37 | 21 | zcnd 9538 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 31 | zcnd 9538 |
. . . . . . . 8
|
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | 2cnd 9151 |
. . . . . . 7
| |
| 42 | 2ap0 9171 |
. . . . . . . 8
| |
| 43 | 42 | a1i 9 |
. . . . . . 7
|
| 44 | 38, 40, 41, 43 | mulcanap2d 8777 |
. . . . . 6
|
| 45 | 44 | biimpd 144 |
. . . . 5
|
| 46 | 36, 45 | sylbid 150 |
. . . 4
|
| 47 | 46 | rgen2 2596 |
. . 3
|
| 48 | dff13 5865 |
. . 3
| |
| 49 | 17, 47, 48 | mpbir2an 947 |
. 2
|
| 50 | oveq1 5981 |
. . . . . . 7
| |
| 51 | 50 | eqeq2d 2221 |
. . . . . 6
|
| 52 | 51 | cbvrexvw 2750 |
. . . . 5
|
| 53 | elfzelz 10189 |
. . . . . . . . . 10
| |
| 54 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 55 | 53, 54 | zmulcld 9543 |
. . . . . . . . 9
|
| 56 | 55, 5 | eleq2s 2304 |
. . . . . . . 8
|
| 57 | eleq1 2272 |
. . . . . . . 8
| |
| 58 | 56, 57 | syl5ibrcom 157 |
. . . . . . 7
|
| 59 | 58 | rexlimiv 2622 |
. . . . . 6
|
| 60 | 59 | pm4.71ri 392 |
. . . . 5
|
| 61 | 52, 60 | bitri 184 |
. . . 4
|
| 62 | 61 | abbii 2325 |
. . 3
|
| 63 | 1 | rnmpt 4948 |
. . 3
|
| 64 | df-rab 2497 |
. . 3
| |
| 65 | 62, 63, 64 | 3eqtr4i 2240 |
. 2
|
| 66 | dff1o5 5557 |
. 2
| |
| 67 | 49, 65, 66 | mpbir2an 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 |
| This theorem is referenced by: 2lgslem1 15735 |
| Copyright terms: Public domain | W3C validator |