ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1b Unicode version

Theorem 2lgslem1b 15237
Description: Lemma 2 for 2lgslem1 15239. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i  |-  I  =  ( A ... B
)
2lgslem1b.f  |-  F  =  ( j  e.  I  |->  ( j  x.  2 ) )
Assertion
Ref Expression
2lgslem1b  |-  F :
I
-1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
Distinct variable group:    i, I, j, x
Allowed substitution hints:    A( x, i, j)    B( x, i, j)    F( x, i, j)

Proof of Theorem 2lgslem1b
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4  |-  F  =  ( j  e.  I  |->  ( j  x.  2 ) )
2 eqeq1 2200 . . . . . 6  |-  ( x  =  ( j  x.  2 )  ->  (
x  =  ( i  x.  2 )  <->  ( j  x.  2 )  =  ( i  x.  2 ) ) )
32rexbidv 2495 . . . . 5  |-  ( x  =  ( j  x.  2 )  ->  ( E. i  e.  I  x  =  ( i  x.  2 )  <->  E. i  e.  I  ( j  x.  2 )  =  ( i  x.  2 ) ) )
4 elfzelz 10094 . . . . . . 7  |-  ( j  e.  ( A ... B )  ->  j  e.  ZZ )
5 2lgslem1b.i . . . . . . 7  |-  I  =  ( A ... B
)
64, 5eleq2s 2288 . . . . . 6  |-  ( j  e.  I  ->  j  e.  ZZ )
7 2z 9348 . . . . . . 7  |-  2  e.  ZZ
87a1i 9 . . . . . 6  |-  ( j  e.  I  ->  2  e.  ZZ )
96, 8zmulcld 9448 . . . . 5  |-  ( j  e.  I  ->  (
j  x.  2 )  e.  ZZ )
10 id 19 . . . . . 6  |-  ( j  e.  I  ->  j  e.  I )
11 oveq1 5926 . . . . . . . 8  |-  ( i  =  j  ->  (
i  x.  2 )  =  ( j  x.  2 ) )
1211eqeq2d 2205 . . . . . . 7  |-  ( i  =  j  ->  (
( j  x.  2 )  =  ( i  x.  2 )  <->  ( j  x.  2 )  =  ( j  x.  2 ) ) )
1312adantl 277 . . . . . 6  |-  ( ( j  e.  I  /\  i  =  j )  ->  ( ( j  x.  2 )  =  ( i  x.  2 )  <-> 
( j  x.  2 )  =  ( j  x.  2 ) ) )
14 eqidd 2194 . . . . . 6  |-  ( j  e.  I  ->  (
j  x.  2 )  =  ( j  x.  2 ) )
1510, 13, 14rspcedvd 2871 . . . . 5  |-  ( j  e.  I  ->  E. i  e.  I  ( j  x.  2 )  =  ( i  x.  2 ) )
163, 9, 15elrabd 2919 . . . 4  |-  ( j  e.  I  ->  (
j  x.  2 )  e.  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) } )
171, 16fmpti 5711 . . 3  |-  F :
I --> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
18 oveq1 5926 . . . . . . 7  |-  ( j  =  y  ->  (
j  x.  2 )  =  ( y  x.  2 ) )
19 simpl 109 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  y  e.  I )
20 elfzelz 10094 . . . . . . . . . 10  |-  ( y  e.  ( A ... B )  ->  y  e.  ZZ )
2120, 5eleq2s 2288 . . . . . . . . 9  |-  ( y  e.  I  ->  y  e.  ZZ )
22 id 19 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  ZZ )
237a1i 9 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  2  e.  ZZ )
2422, 23zmulcld 9448 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  ZZ )
2521, 24syl 14 . . . . . . . 8  |-  ( y  e.  I  ->  (
y  x.  2 )  e.  ZZ )
2625adantr 276 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( y  x.  2 )  e.  ZZ )
271, 18, 19, 26fvmptd3 5652 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( F `  y
)  =  ( y  x.  2 ) )
28 oveq1 5926 . . . . . . 7  |-  ( j  =  z  ->  (
j  x.  2 )  =  ( z  x.  2 ) )
29 simpr 110 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  z  e.  I )
30 elfzelz 10094 . . . . . . . . . 10  |-  ( z  e.  ( A ... B )  ->  z  e.  ZZ )
3130, 5eleq2s 2288 . . . . . . . . 9  |-  ( z  e.  I  ->  z  e.  ZZ )
327a1i 9 . . . . . . . . 9  |-  ( z  e.  I  ->  2  e.  ZZ )
3331, 32zmulcld 9448 . . . . . . . 8  |-  ( z  e.  I  ->  (
z  x.  2 )  e.  ZZ )
3433adantl 277 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( z  x.  2 )  e.  ZZ )
351, 28, 29, 34fvmptd3 5652 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( F `  z
)  =  ( z  x.  2 ) )
3627, 35eqeq12d 2208 . . . . 5  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( F `  y )  =  ( F `  z )  <-> 
( y  x.  2 )  =  ( z  x.  2 ) ) )
3721zcnd 9443 . . . . . . . 8  |-  ( y  e.  I  ->  y  e.  CC )
3837adantr 276 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  y  e.  CC )
3931zcnd 9443 . . . . . . . 8  |-  ( z  e.  I  ->  z  e.  CC )
4039adantl 277 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  z  e.  CC )
41 2cnd 9057 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  2  e.  CC )
42 2ap0 9077 . . . . . . . 8  |-  2 #  0
4342a1i 9 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  2 #  0 )
4438, 40, 41, 43mulcanap2d 8683 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( y  x.  2 )  =  ( z  x.  2 )  <-> 
y  =  z ) )
4544biimpd 144 . . . . 5  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( y  x.  2 )  =  ( z  x.  2 )  ->  y  =  z ) )
4636, 45sylbid 150 . . . 4  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
4746rgen2 2580 . . 3  |-  A. y  e.  I  A. z  e.  I  ( ( F `  y )  =  ( F `  z )  ->  y  =  z )
48 dff13 5812 . . 3  |-  ( F : I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  <->  ( F : I --> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  /\  A. y  e.  I  A. z  e.  I  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
4917, 47, 48mpbir2an 944 . 2  |-  F :
I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
50 oveq1 5926 . . . . . . 7  |-  ( j  =  i  ->  (
j  x.  2 )  =  ( i  x.  2 ) )
5150eqeq2d 2205 . . . . . 6  |-  ( j  =  i  ->  (
x  =  ( j  x.  2 )  <->  x  =  ( i  x.  2 ) ) )
5251cbvrexvw 2731 . . . . 5  |-  ( E. j  e.  I  x  =  ( j  x.  2 )  <->  E. i  e.  I  x  =  ( i  x.  2 ) )
53 elfzelz 10094 . . . . . . . . . 10  |-  ( i  e.  ( A ... B )  ->  i  e.  ZZ )
547a1i 9 . . . . . . . . . 10  |-  ( i  e.  ( A ... B )  ->  2  e.  ZZ )
5553, 54zmulcld 9448 . . . . . . . . 9  |-  ( i  e.  ( A ... B )  ->  (
i  x.  2 )  e.  ZZ )
5655, 5eleq2s 2288 . . . . . . . 8  |-  ( i  e.  I  ->  (
i  x.  2 )  e.  ZZ )
57 eleq1 2256 . . . . . . . 8  |-  ( x  =  ( i  x.  2 )  ->  (
x  e.  ZZ  <->  ( i  x.  2 )  e.  ZZ ) )
5856, 57syl5ibrcom 157 . . . . . . 7  |-  ( i  e.  I  ->  (
x  =  ( i  x.  2 )  ->  x  e.  ZZ )
)
5958rexlimiv 2605 . . . . . 6  |-  ( E. i  e.  I  x  =  ( i  x.  2 )  ->  x  e.  ZZ )
6059pm4.71ri 392 . . . . 5  |-  ( E. i  e.  I  x  =  ( i  x.  2 )  <->  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) )
6152, 60bitri 184 . . . 4  |-  ( E. j  e.  I  x  =  ( j  x.  2 )  <->  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) )
6261abbii 2309 . . 3  |-  { x  |  E. j  e.  I  x  =  ( j  x.  2 ) }  =  { x  |  (
x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) }
631rnmpt 4911 . . 3  |-  ran  F  =  { x  |  E. j  e.  I  x  =  ( j  x.  2 ) }
64 df-rab 2481 . . 3  |-  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  =  {
x  |  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) }
6562, 63, 643eqtr4i 2224 . 2  |-  ran  F  =  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
66 dff1o5 5510 . 2  |-  ( F : I -1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  <->  ( F : I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  /\  ran  F  =  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) } ) )
6749, 65, 66mpbir2an 944 1  |-  F :
I
-1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   {crab 2476   class class class wbr 4030    |-> cmpt 4091   ran crn 4661   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874    x. cmul 7879   # cap 8602   2c2 9035   ZZcz 9320   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  2lgslem1  15239
  Copyright terms: Public domain W3C validator