ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1b Unicode version

Theorem 2lgslem1b 15330
Description: Lemma 2 for 2lgslem1 15332. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i  |-  I  =  ( A ... B
)
2lgslem1b.f  |-  F  =  ( j  e.  I  |->  ( j  x.  2 ) )
Assertion
Ref Expression
2lgslem1b  |-  F :
I
-1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
Distinct variable group:    i, I, j, x
Allowed substitution hints:    A( x, i, j)    B( x, i, j)    F( x, i, j)

Proof of Theorem 2lgslem1b
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4  |-  F  =  ( j  e.  I  |->  ( j  x.  2 ) )
2 eqeq1 2203 . . . . . 6  |-  ( x  =  ( j  x.  2 )  ->  (
x  =  ( i  x.  2 )  <->  ( j  x.  2 )  =  ( i  x.  2 ) ) )
32rexbidv 2498 . . . . 5  |-  ( x  =  ( j  x.  2 )  ->  ( E. i  e.  I  x  =  ( i  x.  2 )  <->  E. i  e.  I  ( j  x.  2 )  =  ( i  x.  2 ) ) )
4 elfzelz 10100 . . . . . . 7  |-  ( j  e.  ( A ... B )  ->  j  e.  ZZ )
5 2lgslem1b.i . . . . . . 7  |-  I  =  ( A ... B
)
64, 5eleq2s 2291 . . . . . 6  |-  ( j  e.  I  ->  j  e.  ZZ )
7 2z 9354 . . . . . . 7  |-  2  e.  ZZ
87a1i 9 . . . . . 6  |-  ( j  e.  I  ->  2  e.  ZZ )
96, 8zmulcld 9454 . . . . 5  |-  ( j  e.  I  ->  (
j  x.  2 )  e.  ZZ )
10 id 19 . . . . . 6  |-  ( j  e.  I  ->  j  e.  I )
11 oveq1 5929 . . . . . . . 8  |-  ( i  =  j  ->  (
i  x.  2 )  =  ( j  x.  2 ) )
1211eqeq2d 2208 . . . . . . 7  |-  ( i  =  j  ->  (
( j  x.  2 )  =  ( i  x.  2 )  <->  ( j  x.  2 )  =  ( j  x.  2 ) ) )
1312adantl 277 . . . . . 6  |-  ( ( j  e.  I  /\  i  =  j )  ->  ( ( j  x.  2 )  =  ( i  x.  2 )  <-> 
( j  x.  2 )  =  ( j  x.  2 ) ) )
14 eqidd 2197 . . . . . 6  |-  ( j  e.  I  ->  (
j  x.  2 )  =  ( j  x.  2 ) )
1510, 13, 14rspcedvd 2874 . . . . 5  |-  ( j  e.  I  ->  E. i  e.  I  ( j  x.  2 )  =  ( i  x.  2 ) )
163, 9, 15elrabd 2922 . . . 4  |-  ( j  e.  I  ->  (
j  x.  2 )  e.  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) } )
171, 16fmpti 5714 . . 3  |-  F :
I --> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
18 oveq1 5929 . . . . . . 7  |-  ( j  =  y  ->  (
j  x.  2 )  =  ( y  x.  2 ) )
19 simpl 109 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  y  e.  I )
20 elfzelz 10100 . . . . . . . . . 10  |-  ( y  e.  ( A ... B )  ->  y  e.  ZZ )
2120, 5eleq2s 2291 . . . . . . . . 9  |-  ( y  e.  I  ->  y  e.  ZZ )
22 id 19 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  ZZ )
237a1i 9 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  2  e.  ZZ )
2422, 23zmulcld 9454 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  ZZ )
2521, 24syl 14 . . . . . . . 8  |-  ( y  e.  I  ->  (
y  x.  2 )  e.  ZZ )
2625adantr 276 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( y  x.  2 )  e.  ZZ )
271, 18, 19, 26fvmptd3 5655 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( F `  y
)  =  ( y  x.  2 ) )
28 oveq1 5929 . . . . . . 7  |-  ( j  =  z  ->  (
j  x.  2 )  =  ( z  x.  2 ) )
29 simpr 110 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  z  e.  I )
30 elfzelz 10100 . . . . . . . . . 10  |-  ( z  e.  ( A ... B )  ->  z  e.  ZZ )
3130, 5eleq2s 2291 . . . . . . . . 9  |-  ( z  e.  I  ->  z  e.  ZZ )
327a1i 9 . . . . . . . . 9  |-  ( z  e.  I  ->  2  e.  ZZ )
3331, 32zmulcld 9454 . . . . . . . 8  |-  ( z  e.  I  ->  (
z  x.  2 )  e.  ZZ )
3433adantl 277 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( z  x.  2 )  e.  ZZ )
351, 28, 29, 34fvmptd3 5655 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( F `  z
)  =  ( z  x.  2 ) )
3627, 35eqeq12d 2211 . . . . 5  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( F `  y )  =  ( F `  z )  <-> 
( y  x.  2 )  =  ( z  x.  2 ) ) )
3721zcnd 9449 . . . . . . . 8  |-  ( y  e.  I  ->  y  e.  CC )
3837adantr 276 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  y  e.  CC )
3931zcnd 9449 . . . . . . . 8  |-  ( z  e.  I  ->  z  e.  CC )
4039adantl 277 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  z  e.  CC )
41 2cnd 9063 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  2  e.  CC )
42 2ap0 9083 . . . . . . . 8  |-  2 #  0
4342a1i 9 . . . . . . 7  |-  ( ( y  e.  I  /\  z  e.  I )  ->  2 #  0 )
4438, 40, 41, 43mulcanap2d 8689 . . . . . 6  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( y  x.  2 )  =  ( z  x.  2 )  <-> 
y  =  z ) )
4544biimpd 144 . . . . 5  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( y  x.  2 )  =  ( z  x.  2 )  ->  y  =  z ) )
4636, 45sylbid 150 . . . 4  |-  ( ( y  e.  I  /\  z  e.  I )  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
4746rgen2 2583 . . 3  |-  A. y  e.  I  A. z  e.  I  ( ( F `  y )  =  ( F `  z )  ->  y  =  z )
48 dff13 5815 . . 3  |-  ( F : I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  <->  ( F : I --> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  /\  A. y  e.  I  A. z  e.  I  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
4917, 47, 48mpbir2an 944 . 2  |-  F :
I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
50 oveq1 5929 . . . . . . 7  |-  ( j  =  i  ->  (
j  x.  2 )  =  ( i  x.  2 ) )
5150eqeq2d 2208 . . . . . 6  |-  ( j  =  i  ->  (
x  =  ( j  x.  2 )  <->  x  =  ( i  x.  2 ) ) )
5251cbvrexvw 2734 . . . . 5  |-  ( E. j  e.  I  x  =  ( j  x.  2 )  <->  E. i  e.  I  x  =  ( i  x.  2 ) )
53 elfzelz 10100 . . . . . . . . . 10  |-  ( i  e.  ( A ... B )  ->  i  e.  ZZ )
547a1i 9 . . . . . . . . . 10  |-  ( i  e.  ( A ... B )  ->  2  e.  ZZ )
5553, 54zmulcld 9454 . . . . . . . . 9  |-  ( i  e.  ( A ... B )  ->  (
i  x.  2 )  e.  ZZ )
5655, 5eleq2s 2291 . . . . . . . 8  |-  ( i  e.  I  ->  (
i  x.  2 )  e.  ZZ )
57 eleq1 2259 . . . . . . . 8  |-  ( x  =  ( i  x.  2 )  ->  (
x  e.  ZZ  <->  ( i  x.  2 )  e.  ZZ ) )
5856, 57syl5ibrcom 157 . . . . . . 7  |-  ( i  e.  I  ->  (
x  =  ( i  x.  2 )  ->  x  e.  ZZ )
)
5958rexlimiv 2608 . . . . . 6  |-  ( E. i  e.  I  x  =  ( i  x.  2 )  ->  x  e.  ZZ )
6059pm4.71ri 392 . . . . 5  |-  ( E. i  e.  I  x  =  ( i  x.  2 )  <->  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) )
6152, 60bitri 184 . . . 4  |-  ( E. j  e.  I  x  =  ( j  x.  2 )  <->  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) )
6261abbii 2312 . . 3  |-  { x  |  E. j  e.  I  x  =  ( j  x.  2 ) }  =  { x  |  (
x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) }
631rnmpt 4914 . . 3  |-  ran  F  =  { x  |  E. j  e.  I  x  =  ( j  x.  2 ) }
64 df-rab 2484 . . 3  |-  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  =  {
x  |  ( x  e.  ZZ  /\  E. i  e.  I  x  =  ( i  x.  2 ) ) }
6562, 63, 643eqtr4i 2227 . 2  |-  ran  F  =  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
66 dff1o5 5513 . 2  |-  ( F : I -1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  <->  ( F : I -1-1-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }  /\  ran  F  =  { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) } ) )
6749, 65, 66mpbir2an 944 1  |-  F :
I
-1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2 ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479   class class class wbr 4033    |-> cmpt 4094   ran crn 4664   -->wf 5254   -1-1->wf1 5255   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879    x. cmul 7884   # cap 8608   2c2 9041   ZZcz 9326   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  2lgslem1  15332
  Copyright terms: Public domain W3C validator