| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1b | Unicode version | ||
| Description: Lemma 2 for 2lgslem1 15332. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1b.i |
|
| 2lgslem1b.f |
|
| Ref | Expression |
|---|---|
| 2lgslem1b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem1b.f |
. . . 4
| |
| 2 | eqeq1 2203 |
. . . . . 6
| |
| 3 | 2 | rexbidv 2498 |
. . . . 5
|
| 4 | elfzelz 10100 |
. . . . . . 7
| |
| 5 | 2lgslem1b.i |
. . . . . . 7
| |
| 6 | 4, 5 | eleq2s 2291 |
. . . . . 6
|
| 7 | 2z 9354 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | 6, 8 | zmulcld 9454 |
. . . . 5
|
| 10 | id 19 |
. . . . . 6
| |
| 11 | oveq1 5929 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2208 |
. . . . . . 7
|
| 13 | 12 | adantl 277 |
. . . . . 6
|
| 14 | eqidd 2197 |
. . . . . 6
| |
| 15 | 10, 13, 14 | rspcedvd 2874 |
. . . . 5
|
| 16 | 3, 9, 15 | elrabd 2922 |
. . . 4
|
| 17 | 1, 16 | fmpti 5714 |
. . 3
|
| 18 | oveq1 5929 |
. . . . . . 7
| |
| 19 | simpl 109 |
. . . . . . 7
| |
| 20 | elfzelz 10100 |
. . . . . . . . . 10
| |
| 21 | 20, 5 | eleq2s 2291 |
. . . . . . . . 9
|
| 22 | id 19 |
. . . . . . . . . 10
| |
| 23 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 22, 23 | zmulcld 9454 |
. . . . . . . . 9
|
| 25 | 21, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 25 | adantr 276 |
. . . . . . 7
|
| 27 | 1, 18, 19, 26 | fvmptd3 5655 |
. . . . . 6
|
| 28 | oveq1 5929 |
. . . . . . 7
| |
| 29 | simpr 110 |
. . . . . . 7
| |
| 30 | elfzelz 10100 |
. . . . . . . . . 10
| |
| 31 | 30, 5 | eleq2s 2291 |
. . . . . . . . 9
|
| 32 | 7 | a1i 9 |
. . . . . . . . 9
|
| 33 | 31, 32 | zmulcld 9454 |
. . . . . . . 8
|
| 34 | 33 | adantl 277 |
. . . . . . 7
|
| 35 | 1, 28, 29, 34 | fvmptd3 5655 |
. . . . . 6
|
| 36 | 27, 35 | eqeq12d 2211 |
. . . . 5
|
| 37 | 21 | zcnd 9449 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 31 | zcnd 9449 |
. . . . . . . 8
|
| 40 | 39 | adantl 277 |
. . . . . . 7
|
| 41 | 2cnd 9063 |
. . . . . . 7
| |
| 42 | 2ap0 9083 |
. . . . . . . 8
| |
| 43 | 42 | a1i 9 |
. . . . . . 7
|
| 44 | 38, 40, 41, 43 | mulcanap2d 8689 |
. . . . . 6
|
| 45 | 44 | biimpd 144 |
. . . . 5
|
| 46 | 36, 45 | sylbid 150 |
. . . 4
|
| 47 | 46 | rgen2 2583 |
. . 3
|
| 48 | dff13 5815 |
. . 3
| |
| 49 | 17, 47, 48 | mpbir2an 944 |
. 2
|
| 50 | oveq1 5929 |
. . . . . . 7
| |
| 51 | 50 | eqeq2d 2208 |
. . . . . 6
|
| 52 | 51 | cbvrexvw 2734 |
. . . . 5
|
| 53 | elfzelz 10100 |
. . . . . . . . . 10
| |
| 54 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 55 | 53, 54 | zmulcld 9454 |
. . . . . . . . 9
|
| 56 | 55, 5 | eleq2s 2291 |
. . . . . . . 8
|
| 57 | eleq1 2259 |
. . . . . . . 8
| |
| 58 | 56, 57 | syl5ibrcom 157 |
. . . . . . 7
|
| 59 | 58 | rexlimiv 2608 |
. . . . . 6
|
| 60 | 59 | pm4.71ri 392 |
. . . . 5
|
| 61 | 52, 60 | bitri 184 |
. . . 4
|
| 62 | 61 | abbii 2312 |
. . 3
|
| 63 | 1 | rnmpt 4914 |
. . 3
|
| 64 | df-rab 2484 |
. . 3
| |
| 65 | 62, 63, 64 | 3eqtr4i 2227 |
. 2
|
| 66 | dff1o5 5513 |
. 2
| |
| 67 | 49, 65, 66 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: 2lgslem1 15332 |
| Copyright terms: Public domain | W3C validator |