ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1c Unicode version

Theorem 2lgslem1c 15734
Description: Lemma 3 for 2lgslem1 15735. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )

Proof of Theorem 2lgslem1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmnn 12598 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9344 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
3 oddnn02np1 12357 . . . 4  |-  ( P  e.  NN0  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
41, 2, 33syl 17 . . 3  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
5 iftrue 3587 . . . . . . . . . 10  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
65adantr 276 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
7 2nn 9240 . . . . . . . . . . 11  |-  2  e.  NN
8 nn0ledivnn 9931 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  2  e.  NN )  ->  ( n  /  2
)  <_  n )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  /  2 )  <_  n )
109adantl 277 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  -> 
( n  /  2
)  <_  n )
116, 10eqbrtrd 4084 . . . . . . . 8  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
1211expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
13 iffalse 3590 . . . . . . . . . 10  |-  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( ( n  -  1 )  /  2 ) )
1413adantr 276 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  =  ( ( n  - 
1 )  /  2
) )
15 nn0re 9346 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  RR )
16 peano2rem 8381 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
1716rehalfcld 9326 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  (
( n  -  1 )  /  2 )  e.  RR )
1815, 17syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  e.  RR )
1915rehalfcld 9326 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  /  2 )  e.  RR )
2015lem1d 9048 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  -  1 )  <_  n )
2115, 16syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( n  -  1 )  e.  RR )
22 2re 9148 . . . . . . . . . . . . . . 15  |-  2  e.  RR
23 2pos 9169 . . . . . . . . . . . . . . 15  |-  0  <  2
2422, 23pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
2524a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
26 lediv1 8984 . . . . . . . . . . . . 13  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( ( n  - 
1 )  /  2
)  <_  ( n  /  2 ) ) )
2721, 15, 25, 26syl3anc 1252 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  <_  n  <->  ( (
n  -  1 )  /  2 )  <_ 
( n  /  2
) ) )
2820, 27mpbid 147 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_ 
( n  /  2
) )
2918, 19, 15, 28, 9letrd 8238 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_  n )
3029adantl 277 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  ( ( n  -  1 )  / 
2 )  <_  n
)
3114, 30eqbrtrd 4084 . . . . . . . 8  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3231expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
33 nn0z 9434 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
34 zeo3 12345 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
2  ||  n  \/  -.  2  ||  n ) )
3533, 34syl 14 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  \/  -.  2  ||  n ) )
3612, 32, 35mpjaod 722 . . . . . 6  |-  ( n  e.  NN0  ->  if ( 2  ||  n ,  ( n  /  2
) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
3736ad2antlr 489 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3833adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  n  e.  ZZ )
39 eqcom 2211 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  <->  P  =  ( ( 2  x.  n )  +  1 ) )
4039biimpi 120 . . . . . 6  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  P  =  ( ( 2  x.  n )  +  1 ) )
41 flodddiv4 12413 . . . . . 6  |-  ( ( n  e.  ZZ  /\  P  =  ( (
2  x.  n )  +  1 ) )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
4238, 40, 41syl2an 289 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
43 oveq1 5981 . . . . . . . . . 10  |-  ( P  =  ( ( 2  x.  n )  +  1 )  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4443eqcoms 2212 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4544adantl 277 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( ( ( 2  x.  n )  +  1 )  -  1 ) )
46 2nn0 9354 . . . . . . . . . . . . 13  |-  2  e.  NN0
4746a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
48 id 19 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
4947, 48nn0mulcld 9395 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
5049nn0cnd 9392 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  CC )
51 pncan1 8491 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( ( ( 2  x.  n
)  +  1 )  -  1 )  =  ( 2  x.  n
) )
5352ad2antlr 489 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( ( 2  x.  n )  +  1 )  - 
1 )  =  ( 2  x.  n ) )
5445, 53eqtrd 2242 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( 2  x.  n ) )
5554oveq1d 5989 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  ( ( 2  x.  n
)  /  2 ) )
56 nn0cn 9347 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  CC )
57 2cnd 9151 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  e.  CC )
58 2ap0 9171 . . . . . . . . 9  |-  2 #  0
5958a1i 9 . . . . . . . 8  |-  ( n  e.  NN0  ->  2 #  0 )
6056, 57, 59divcanap3d 8910 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  /  2 )  =  n )
6160ad2antlr 489 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( 2  x.  n )  / 
2 )  =  n )
6255, 61eqtrd 2242 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  n )
6337, 42, 623brtr4d 4094 . . . 4  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
6463rexlimdva2 2631 . . 3  |-  ( P  e.  Prime  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  P  ->  ( |_ `  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
654, 64sylbid 150 . 2  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6665imp 124 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    = wceq 1375    e. wcel 2180   E.wrex 2489   ifcif 3582   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    <_ cle 8150    - cmin 8285   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   4c4 9131   NN0cn0 9337   ZZcz 9414   |_cfl 10455    || cdvds 12264   Primecprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-dvds 12265  df-prm 12596
This theorem is referenced by:  2lgslem1  15735
  Copyright terms: Public domain W3C validator