ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1c Unicode version

Theorem 2lgslem1c 15238
Description: Lemma 3 for 2lgslem1 15239. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )

Proof of Theorem 2lgslem1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmnn 12251 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9250 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
3 oddnn02np1 12024 . . . 4  |-  ( P  e.  NN0  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
41, 2, 33syl 17 . . 3  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
5 iftrue 3563 . . . . . . . . . 10  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
65adantr 276 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
7 2nn 9146 . . . . . . . . . . 11  |-  2  e.  NN
8 nn0ledivnn 9836 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  2  e.  NN )  ->  ( n  /  2
)  <_  n )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  /  2 )  <_  n )
109adantl 277 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  -> 
( n  /  2
)  <_  n )
116, 10eqbrtrd 4052 . . . . . . . 8  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
1211expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
13 iffalse 3566 . . . . . . . . . 10  |-  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( ( n  -  1 )  /  2 ) )
1413adantr 276 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  =  ( ( n  - 
1 )  /  2
) )
15 nn0re 9252 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  RR )
16 peano2rem 8288 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
1716rehalfcld 9232 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  (
( n  -  1 )  /  2 )  e.  RR )
1815, 17syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  e.  RR )
1915rehalfcld 9232 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  /  2 )  e.  RR )
2015lem1d 8954 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  -  1 )  <_  n )
2115, 16syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( n  -  1 )  e.  RR )
22 2re 9054 . . . . . . . . . . . . . . 15  |-  2  e.  RR
23 2pos 9075 . . . . . . . . . . . . . . 15  |-  0  <  2
2422, 23pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
2524a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
26 lediv1 8890 . . . . . . . . . . . . 13  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( ( n  - 
1 )  /  2
)  <_  ( n  /  2 ) ) )
2721, 15, 25, 26syl3anc 1249 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  <_  n  <->  ( (
n  -  1 )  /  2 )  <_ 
( n  /  2
) ) )
2820, 27mpbid 147 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_ 
( n  /  2
) )
2918, 19, 15, 28, 9letrd 8145 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_  n )
3029adantl 277 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  ( ( n  -  1 )  / 
2 )  <_  n
)
3114, 30eqbrtrd 4052 . . . . . . . 8  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3231expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
33 nn0z 9340 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
34 zeo3 12012 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
2  ||  n  \/  -.  2  ||  n ) )
3533, 34syl 14 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  \/  -.  2  ||  n ) )
3612, 32, 35mpjaod 719 . . . . . 6  |-  ( n  e.  NN0  ->  if ( 2  ||  n ,  ( n  /  2
) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
3736ad2antlr 489 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3833adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  n  e.  ZZ )
39 eqcom 2195 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  <->  P  =  ( ( 2  x.  n )  +  1 ) )
4039biimpi 120 . . . . . 6  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  P  =  ( ( 2  x.  n )  +  1 ) )
41 flodddiv4 12078 . . . . . 6  |-  ( ( n  e.  ZZ  /\  P  =  ( (
2  x.  n )  +  1 ) )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
4238, 40, 41syl2an 289 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
43 oveq1 5926 . . . . . . . . . 10  |-  ( P  =  ( ( 2  x.  n )  +  1 )  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4443eqcoms 2196 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4544adantl 277 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( ( ( 2  x.  n )  +  1 )  -  1 ) )
46 2nn0 9260 . . . . . . . . . . . . 13  |-  2  e.  NN0
4746a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
48 id 19 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
4947, 48nn0mulcld 9301 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
5049nn0cnd 9298 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  CC )
51 pncan1 8398 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( ( ( 2  x.  n
)  +  1 )  -  1 )  =  ( 2  x.  n
) )
5352ad2antlr 489 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( ( 2  x.  n )  +  1 )  - 
1 )  =  ( 2  x.  n ) )
5445, 53eqtrd 2226 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( 2  x.  n ) )
5554oveq1d 5934 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  ( ( 2  x.  n
)  /  2 ) )
56 nn0cn 9253 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  CC )
57 2cnd 9057 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  e.  CC )
58 2ap0 9077 . . . . . . . . 9  |-  2 #  0
5958a1i 9 . . . . . . . 8  |-  ( n  e.  NN0  ->  2 #  0 )
6056, 57, 59divcanap3d 8816 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  /  2 )  =  n )
6160ad2antlr 489 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( 2  x.  n )  / 
2 )  =  n )
6255, 61eqtrd 2226 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  n )
6337, 42, 623brtr4d 4062 . . . 4  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
6463rexlimdva2 2614 . . 3  |-  ( P  e.  Prime  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  P  ->  ( |_ `  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
654, 64sylbid 150 . 2  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6665imp 124 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473   ifcif 3558   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   4c4 9037   NN0cn0 9243   ZZcz 9320   |_cfl 10340    || cdvds 11933   Primecprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-dvds 11934  df-prm 12249
This theorem is referenced by:  2lgslem1  15239
  Copyright terms: Public domain W3C validator