| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1c | Unicode version | ||
| Description: Lemma 3 for 2lgslem1 15332. (Contributed by AV, 19-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| 2lgslem1c | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prmnn 12278 | 
. . . 4
 | |
| 2 | nnnn0 9256 | 
. . . 4
 | |
| 3 | oddnn02np1 12045 | 
. . . 4
 | |
| 4 | 1, 2, 3 | 3syl 17 | 
. . 3
 | 
| 5 | iftrue 3566 | 
. . . . . . . . . 10
 | |
| 6 | 5 | adantr 276 | 
. . . . . . . . 9
 | 
| 7 | 2nn 9152 | 
. . . . . . . . . . 11
 | |
| 8 | nn0ledivnn 9842 | 
. . . . . . . . . . 11
 | |
| 9 | 7, 8 | mpan2 425 | 
. . . . . . . . . 10
 | 
| 10 | 9 | adantl 277 | 
. . . . . . . . 9
 | 
| 11 | 6, 10 | eqbrtrd 4055 | 
. . . . . . . 8
 | 
| 12 | 11 | expcom 116 | 
. . . . . . 7
 | 
| 13 | iffalse 3569 | 
. . . . . . . . . 10
 | |
| 14 | 13 | adantr 276 | 
. . . . . . . . 9
 | 
| 15 | nn0re 9258 | 
. . . . . . . . . . . 12
 | |
| 16 | peano2rem 8293 | 
. . . . . . . . . . . . 13
 | |
| 17 | 16 | rehalfcld 9238 | 
. . . . . . . . . . . 12
 | 
| 18 | 15, 17 | syl 14 | 
. . . . . . . . . . 11
 | 
| 19 | 15 | rehalfcld 9238 | 
. . . . . . . . . . 11
 | 
| 20 | 15 | lem1d 8960 | 
. . . . . . . . . . . 12
 | 
| 21 | 15, 16 | syl 14 | 
. . . . . . . . . . . . 13
 | 
| 22 | 2re 9060 | 
. . . . . . . . . . . . . . 15
 | |
| 23 | 2pos 9081 | 
. . . . . . . . . . . . . . 15
 | |
| 24 | 22, 23 | pm3.2i 272 | 
. . . . . . . . . . . . . 14
 | 
| 25 | 24 | a1i 9 | 
. . . . . . . . . . . . 13
 | 
| 26 | lediv1 8896 | 
. . . . . . . . . . . . 13
 | |
| 27 | 21, 15, 25, 26 | syl3anc 1249 | 
. . . . . . . . . . . 12
 | 
| 28 | 20, 27 | mpbid 147 | 
. . . . . . . . . . 11
 | 
| 29 | 18, 19, 15, 28, 9 | letrd 8150 | 
. . . . . . . . . 10
 | 
| 30 | 29 | adantl 277 | 
. . . . . . . . 9
 | 
| 31 | 14, 30 | eqbrtrd 4055 | 
. . . . . . . 8
 | 
| 32 | 31 | expcom 116 | 
. . . . . . 7
 | 
| 33 | nn0z 9346 | 
. . . . . . . 8
 | |
| 34 | zeo3 12033 | 
. . . . . . . 8
 | |
| 35 | 33, 34 | syl 14 | 
. . . . . . 7
 | 
| 36 | 12, 32, 35 | mpjaod 719 | 
. . . . . 6
 | 
| 37 | 36 | ad2antlr 489 | 
. . . . 5
 | 
| 38 | 33 | adantl 277 | 
. . . . . 6
 | 
| 39 | eqcom 2198 | 
. . . . . . 7
 | |
| 40 | 39 | biimpi 120 | 
. . . . . 6
 | 
| 41 | flodddiv4 12101 | 
. . . . . 6
 | |
| 42 | 38, 40, 41 | syl2an 289 | 
. . . . 5
 | 
| 43 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 44 | 43 | eqcoms 2199 | 
. . . . . . . . 9
 | 
| 45 | 44 | adantl 277 | 
. . . . . . . 8
 | 
| 46 | 2nn0 9266 | 
. . . . . . . . . . . . 13
 | |
| 47 | 46 | a1i 9 | 
. . . . . . . . . . . 12
 | 
| 48 | id 19 | 
. . . . . . . . . . . 12
 | |
| 49 | 47, 48 | nn0mulcld 9307 | 
. . . . . . . . . . 11
 | 
| 50 | 49 | nn0cnd 9304 | 
. . . . . . . . . 10
 | 
| 51 | pncan1 8403 | 
. . . . . . . . . 10
 | |
| 52 | 50, 51 | syl 14 | 
. . . . . . . . 9
 | 
| 53 | 52 | ad2antlr 489 | 
. . . . . . . 8
 | 
| 54 | 45, 53 | eqtrd 2229 | 
. . . . . . 7
 | 
| 55 | 54 | oveq1d 5937 | 
. . . . . 6
 | 
| 56 | nn0cn 9259 | 
. . . . . . . 8
 | |
| 57 | 2cnd 9063 | 
. . . . . . . 8
 | |
| 58 | 2ap0 9083 | 
. . . . . . . . 9
 | |
| 59 | 58 | a1i 9 | 
. . . . . . . 8
 | 
| 60 | 56, 57, 59 | divcanap3d 8822 | 
. . . . . . 7
 | 
| 61 | 60 | ad2antlr 489 | 
. . . . . 6
 | 
| 62 | 55, 61 | eqtrd 2229 | 
. . . . 5
 | 
| 63 | 37, 42, 62 | 3brtr4d 4065 | 
. . . 4
 | 
| 64 | 63 | rexlimdva2 2617 | 
. . 3
 | 
| 65 | 4, 64 | sylbid 150 | 
. 2
 | 
| 66 | 65 | imp 124 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 df-dvds 11953 df-prm 12276 | 
| This theorem is referenced by: 2lgslem1 15332 | 
| Copyright terms: Public domain | W3C validator |