ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1c Unicode version

Theorem 2lgslem1c 15415
Description: Lemma 3 for 2lgslem1 15416. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )

Proof of Theorem 2lgslem1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmnn 12303 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9273 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
3 oddnn02np1 12062 . . . 4  |-  ( P  e.  NN0  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
41, 2, 33syl 17 . . 3  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
5 iftrue 3567 . . . . . . . . . 10  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
65adantr 276 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
7 2nn 9169 . . . . . . . . . . 11  |-  2  e.  NN
8 nn0ledivnn 9859 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  2  e.  NN )  ->  ( n  /  2
)  <_  n )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  /  2 )  <_  n )
109adantl 277 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  -> 
( n  /  2
)  <_  n )
116, 10eqbrtrd 4056 . . . . . . . 8  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
1211expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
13 iffalse 3570 . . . . . . . . . 10  |-  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( ( n  -  1 )  /  2 ) )
1413adantr 276 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  =  ( ( n  - 
1 )  /  2
) )
15 nn0re 9275 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  RR )
16 peano2rem 8310 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
1716rehalfcld 9255 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  (
( n  -  1 )  /  2 )  e.  RR )
1815, 17syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  e.  RR )
1915rehalfcld 9255 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  /  2 )  e.  RR )
2015lem1d 8977 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  -  1 )  <_  n )
2115, 16syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( n  -  1 )  e.  RR )
22 2re 9077 . . . . . . . . . . . . . . 15  |-  2  e.  RR
23 2pos 9098 . . . . . . . . . . . . . . 15  |-  0  <  2
2422, 23pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
2524a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
26 lediv1 8913 . . . . . . . . . . . . 13  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( ( n  - 
1 )  /  2
)  <_  ( n  /  2 ) ) )
2721, 15, 25, 26syl3anc 1249 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  <_  n  <->  ( (
n  -  1 )  /  2 )  <_ 
( n  /  2
) ) )
2820, 27mpbid 147 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_ 
( n  /  2
) )
2918, 19, 15, 28, 9letrd 8167 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_  n )
3029adantl 277 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  ( ( n  -  1 )  / 
2 )  <_  n
)
3114, 30eqbrtrd 4056 . . . . . . . 8  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3231expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
33 nn0z 9363 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
34 zeo3 12050 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
2  ||  n  \/  -.  2  ||  n ) )
3533, 34syl 14 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  \/  -.  2  ||  n ) )
3612, 32, 35mpjaod 719 . . . . . 6  |-  ( n  e.  NN0  ->  if ( 2  ||  n ,  ( n  /  2
) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
3736ad2antlr 489 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3833adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  n  e.  ZZ )
39 eqcom 2198 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  <->  P  =  ( ( 2  x.  n )  +  1 ) )
4039biimpi 120 . . . . . 6  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  P  =  ( ( 2  x.  n )  +  1 ) )
41 flodddiv4 12118 . . . . . 6  |-  ( ( n  e.  ZZ  /\  P  =  ( (
2  x.  n )  +  1 ) )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
4238, 40, 41syl2an 289 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
43 oveq1 5932 . . . . . . . . . 10  |-  ( P  =  ( ( 2  x.  n )  +  1 )  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4443eqcoms 2199 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4544adantl 277 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( ( ( 2  x.  n )  +  1 )  -  1 ) )
46 2nn0 9283 . . . . . . . . . . . . 13  |-  2  e.  NN0
4746a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
48 id 19 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
4947, 48nn0mulcld 9324 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
5049nn0cnd 9321 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  CC )
51 pncan1 8420 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( ( ( 2  x.  n
)  +  1 )  -  1 )  =  ( 2  x.  n
) )
5352ad2antlr 489 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( ( 2  x.  n )  +  1 )  - 
1 )  =  ( 2  x.  n ) )
5445, 53eqtrd 2229 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( 2  x.  n ) )
5554oveq1d 5940 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  ( ( 2  x.  n
)  /  2 ) )
56 nn0cn 9276 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  CC )
57 2cnd 9080 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  e.  CC )
58 2ap0 9100 . . . . . . . . 9  |-  2 #  0
5958a1i 9 . . . . . . . 8  |-  ( n  e.  NN0  ->  2 #  0 )
6056, 57, 59divcanap3d 8839 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  /  2 )  =  n )
6160ad2antlr 489 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( 2  x.  n )  / 
2 )  =  n )
6255, 61eqtrd 2229 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  n )
6337, 42, 623brtr4d 4066 . . . 4  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
6463rexlimdva2 2617 . . 3  |-  ( P  e.  Prime  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  P  ->  ( |_ `  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
654, 64sylbid 150 . 2  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6665imp 124 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476   ifcif 3562   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   2c2 9058   4c4 9060   NN0cn0 9266   ZZcz 9343   |_cfl 10375    || cdvds 11969   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-dvds 11970  df-prm 12301
This theorem is referenced by:  2lgslem1  15416
  Copyright terms: Public domain W3C validator