| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1c | Unicode version | ||
| Description: Lemma 3 for 2lgslem1 15778. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12640 |
. . . 4
| |
| 2 | nnnn0 9384 |
. . . 4
| |
| 3 | oddnn02np1 12399 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 17 |
. . 3
|
| 5 | iftrue 3607 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | 2nn 9280 |
. . . . . . . . . . 11
| |
| 8 | nn0ledivnn 9971 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | mpan2 425 |
. . . . . . . . . 10
|
| 10 | 9 | adantl 277 |
. . . . . . . . 9
|
| 11 | 6, 10 | eqbrtrd 4105 |
. . . . . . . 8
|
| 12 | 11 | expcom 116 |
. . . . . . 7
|
| 13 | iffalse 3610 |
. . . . . . . . . 10
| |
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | nn0re 9386 |
. . . . . . . . . . . 12
| |
| 16 | peano2rem 8421 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | rehalfcld 9366 |
. . . . . . . . . . . 12
|
| 18 | 15, 17 | syl 14 |
. . . . . . . . . . 11
|
| 19 | 15 | rehalfcld 9366 |
. . . . . . . . . . 11
|
| 20 | 15 | lem1d 9088 |
. . . . . . . . . . . 12
|
| 21 | 15, 16 | syl 14 |
. . . . . . . . . . . . 13
|
| 22 | 2re 9188 |
. . . . . . . . . . . . . . 15
| |
| 23 | 2pos 9209 |
. . . . . . . . . . . . . . 15
| |
| 24 | 22, 23 | pm3.2i 272 |
. . . . . . . . . . . . . 14
|
| 25 | 24 | a1i 9 |
. . . . . . . . . . . . 13
|
| 26 | lediv1 9024 |
. . . . . . . . . . . . 13
| |
| 27 | 21, 15, 25, 26 | syl3anc 1271 |
. . . . . . . . . . . 12
|
| 28 | 20, 27 | mpbid 147 |
. . . . . . . . . . 11
|
| 29 | 18, 19, 15, 28, 9 | letrd 8278 |
. . . . . . . . . 10
|
| 30 | 29 | adantl 277 |
. . . . . . . . 9
|
| 31 | 14, 30 | eqbrtrd 4105 |
. . . . . . . 8
|
| 32 | 31 | expcom 116 |
. . . . . . 7
|
| 33 | nn0z 9474 |
. . . . . . . 8
| |
| 34 | zeo3 12387 |
. . . . . . . 8
| |
| 35 | 33, 34 | syl 14 |
. . . . . . 7
|
| 36 | 12, 32, 35 | mpjaod 723 |
. . . . . 6
|
| 37 | 36 | ad2antlr 489 |
. . . . 5
|
| 38 | 33 | adantl 277 |
. . . . . 6
|
| 39 | eqcom 2231 |
. . . . . . 7
| |
| 40 | 39 | biimpi 120 |
. . . . . 6
|
| 41 | flodddiv4 12455 |
. . . . . 6
| |
| 42 | 38, 40, 41 | syl2an 289 |
. . . . 5
|
| 43 | oveq1 6014 |
. . . . . . . . . 10
| |
| 44 | 43 | eqcoms 2232 |
. . . . . . . . 9
|
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 2nn0 9394 |
. . . . . . . . . . . . 13
| |
| 47 | 46 | a1i 9 |
. . . . . . . . . . . 12
|
| 48 | id 19 |
. . . . . . . . . . . 12
| |
| 49 | 47, 48 | nn0mulcld 9435 |
. . . . . . . . . . 11
|
| 50 | 49 | nn0cnd 9432 |
. . . . . . . . . 10
|
| 51 | pncan1 8531 |
. . . . . . . . . 10
| |
| 52 | 50, 51 | syl 14 |
. . . . . . . . 9
|
| 53 | 52 | ad2antlr 489 |
. . . . . . . 8
|
| 54 | 45, 53 | eqtrd 2262 |
. . . . . . 7
|
| 55 | 54 | oveq1d 6022 |
. . . . . 6
|
| 56 | nn0cn 9387 |
. . . . . . . 8
| |
| 57 | 2cnd 9191 |
. . . . . . . 8
| |
| 58 | 2ap0 9211 |
. . . . . . . . 9
| |
| 59 | 58 | a1i 9 |
. . . . . . . 8
|
| 60 | 56, 57, 59 | divcanap3d 8950 |
. . . . . . 7
|
| 61 | 60 | ad2antlr 489 |
. . . . . 6
|
| 62 | 55, 61 | eqtrd 2262 |
. . . . 5
|
| 63 | 37, 42, 62 | 3brtr4d 4115 |
. . . 4
|
| 64 | 63 | rexlimdva2 2651 |
. . 3
|
| 65 | 4, 64 | sylbid 150 |
. 2
|
| 66 | 65 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 df-dvds 12307 df-prm 12638 |
| This theorem is referenced by: 2lgslem1 15778 |
| Copyright terms: Public domain | W3C validator |