ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1c Unicode version

Theorem 2lgslem1c 15611
Description: Lemma 3 for 2lgslem1 15612. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )

Proof of Theorem 2lgslem1c
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prmnn 12476 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9309 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
3 oddnn02np1 12235 . . . 4  |-  ( P  e.  NN0  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
41, 2, 33syl 17 . . 3  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  P ) )
5 iftrue 3577 . . . . . . . . . 10  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
65adantr 276 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( n  /  2 ) )
7 2nn 9205 . . . . . . . . . . 11  |-  2  e.  NN
8 nn0ledivnn 9896 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  2  e.  NN )  ->  ( n  /  2
)  <_  n )
97, 8mpan2 425 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  /  2 )  <_  n )
109adantl 277 . . . . . . . . 9  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  -> 
( n  /  2
)  <_  n )
116, 10eqbrtrd 4069 . . . . . . . 8  |-  ( ( 2  ||  n  /\  n  e.  NN0 )  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
1211expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
13 iffalse 3580 . . . . . . . . . 10  |-  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  =  ( ( n  -  1 )  /  2 ) )
1413adantr 276 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  =  ( ( n  - 
1 )  /  2
) )
15 nn0re 9311 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  RR )
16 peano2rem 8346 . . . . . . . . . . . . 13  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
1716rehalfcld 9291 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  (
( n  -  1 )  /  2 )  e.  RR )
1815, 17syl 14 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  e.  RR )
1915rehalfcld 9291 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  /  2 )  e.  RR )
2015lem1d 9013 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  -  1 )  <_  n )
2115, 16syl 14 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( n  -  1 )  e.  RR )
22 2re 9113 . . . . . . . . . . . . . . 15  |-  2  e.  RR
23 2pos 9134 . . . . . . . . . . . . . . 15  |-  0  <  2
2422, 23pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
2524a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2  e.  RR  /\  0  <  2 ) )
26 lediv1 8949 . . . . . . . . . . . . 13  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( ( n  - 
1 )  /  2
)  <_  ( n  /  2 ) ) )
2721, 15, 25, 26syl3anc 1250 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  <_  n  <->  ( (
n  -  1 )  /  2 )  <_ 
( n  /  2
) ) )
2820, 27mpbid 147 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_ 
( n  /  2
) )
2918, 19, 15, 28, 9letrd 8203 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( ( n  -  1 )  /  2 )  <_  n )
3029adantl 277 . . . . . . . . 9  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  ( ( n  -  1 )  / 
2 )  <_  n
)
3114, 30eqbrtrd 4069 . . . . . . . 8  |-  ( ( -.  2  ||  n  /\  n  e.  NN0 )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3231expcom 116 . . . . . . 7  |-  ( n  e.  NN0  ->  ( -.  2  ||  n  ->  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
)
33 nn0z 9399 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
34 zeo3 12223 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
2  ||  n  \/  -.  2  ||  n ) )
3533, 34syl 14 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 
||  n  \/  -.  2  ||  n ) )
3612, 32, 35mpjaod 720 . . . . . 6  |-  ( n  e.  NN0  ->  if ( 2  ||  n ,  ( n  /  2
) ,  ( ( n  -  1 )  /  2 ) )  <_  n )
3736ad2antlr 489 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  if ( 2 
||  n ,  ( n  /  2 ) ,  ( ( n  -  1 )  / 
2 ) )  <_  n )
3833adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  n  e.  NN0 )  ->  n  e.  ZZ )
39 eqcom 2208 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  <->  P  =  ( ( 2  x.  n )  +  1 ) )
4039biimpi 120 . . . . . 6  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  P  =  ( ( 2  x.  n )  +  1 ) )
41 flodddiv4 12291 . . . . . 6  |-  ( ( n  e.  ZZ  /\  P  =  ( (
2  x.  n )  +  1 ) )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
4238, 40, 41syl2an 289 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  =  if ( 2  ||  n ,  ( n  / 
2 ) ,  ( ( n  -  1 )  /  2 ) ) )
43 oveq1 5958 . . . . . . . . . 10  |-  ( P  =  ( ( 2  x.  n )  +  1 )  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4443eqcoms 2209 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  P  ->  ( P  -  1 )  =  ( ( ( 2  x.  n )  +  1 )  - 
1 ) )
4544adantl 277 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( ( ( 2  x.  n )  +  1 )  -  1 ) )
46 2nn0 9319 . . . . . . . . . . . . 13  |-  2  e.  NN0
4746a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
48 id 19 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
4947, 48nn0mulcld 9360 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
5049nn0cnd 9357 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e.  CC )
51 pncan1 8456 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
5250, 51syl 14 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( ( ( 2  x.  n
)  +  1 )  -  1 )  =  ( 2  x.  n
) )
5352ad2antlr 489 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( ( 2  x.  n )  +  1 )  - 
1 )  =  ( 2  x.  n ) )
5445, 53eqtrd 2239 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( P  - 
1 )  =  ( 2  x.  n ) )
5554oveq1d 5966 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  ( ( 2  x.  n
)  /  2 ) )
56 nn0cn 9312 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  CC )
57 2cnd 9116 . . . . . . . 8  |-  ( n  e.  NN0  ->  2  e.  CC )
58 2ap0 9136 . . . . . . . . 9  |-  2 #  0
5958a1i 9 . . . . . . . 8  |-  ( n  e.  NN0  ->  2 #  0 )
6056, 57, 59divcanap3d 8875 . . . . . . 7  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  /  2 )  =  n )
6160ad2antlr 489 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( 2  x.  n )  / 
2 )  =  n )
6255, 61eqtrd 2239 . . . . 5  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( ( P  -  1 )  / 
2 )  =  n )
6337, 42, 623brtr4d 4079 . . . 4  |-  ( ( ( P  e.  Prime  /\  n  e.  NN0 )  /\  ( ( 2  x.  n )  +  1 )  =  P )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
6463rexlimdva2 2627 . . 3  |-  ( P  e.  Prime  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  P  ->  ( |_ `  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
654, 64sylbid 150 . 2  |-  ( P  e.  Prime  ->  ( -.  2  ||  P  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) )
6665imp 124 1  |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  -> 
( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   E.wrex 2486   ifcif 3572   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    <_ cle 8115    - cmin 8250   # cap 8661    / cdiv 8752   NNcn 9043   2c2 9094   4c4 9096   NN0cn0 9302   ZZcz 9379   |_cfl 10418    || cdvds 12142   Primecprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-dvds 12143  df-prm 12474
This theorem is referenced by:  2lgslem1  15612
  Copyright terms: Public domain W3C validator