| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a | Unicode version | ||
| Description: Lemma 1 for 2lgslem1 15612. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12476 |
. . . . . . . . . 10
| |
| 2 | 1 | nnnn0d 9355 |
. . . . . . . . 9
|
| 3 | 2 | ad2antrr 488 |
. . . . . . . 8
|
| 4 | 4nn 9207 |
. . . . . . . 8
| |
| 5 | 3, 4 | jctir 313 |
. . . . . . 7
|
| 6 | fldivnn0 10445 |
. . . . . . 7
| |
| 7 | nn0p1nn 9341 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | 3syl 17 |
. . . . . 6
|
| 9 | elnnuz 9692 |
. . . . . 6
| |
| 10 | 8, 9 | sylib 122 |
. . . . 5
|
| 11 | fzss1 10192 |
. . . . 5
| |
| 12 | rexss 3261 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
|
| 14 | ancom 266 |
. . . . . 6
| |
| 15 | 2, 4 | jctir 313 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15, 6 | syl 14 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | nn0zd 9500 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . 14
|
| 19 | elfzelz 10154 |
. . . . . . . . . . . . . 14
| |
| 20 | zltp1le 9434 |
. . . . . . . . . . . . . 14
| |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 22 | 21 | bicomd 141 |
. . . . . . . . . . . 12
|
| 23 | 22 | anbi1d 465 |
. . . . . . . . . . 11
|
| 24 | 19 | adantl 277 |
. . . . . . . . . . . 12
|
| 25 | 17 | peano2zd 9505 |
. . . . . . . . . . . . . 14
|
| 26 | 25 | adantr 276 |
. . . . . . . . . . . . 13
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 28 | prmz 12477 |
. . . . . . . . . . . . . . 15
| |
| 29 | oddm1d2 12247 |
. . . . . . . . . . . . . . 15
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | biimpa 296 |
. . . . . . . . . . . . 13
|
| 32 | 31 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 33 | elfz 10143 |
. . . . . . . . . . . 12
| |
| 34 | 24, 27, 32, 33 | syl3anc 1250 |
. . . . . . . . . . 11
|
| 35 | elfzle2 10157 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | biantrud 304 |
. . . . . . . . . . 11
|
| 38 | 23, 34, 37 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 39 | 28 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 40 | 2lgslem1a2 15608 |
. . . . . . . . . . 11
| |
| 41 | 39, 19, 40 | syl2an 289 |
. . . . . . . . . 10
|
| 42 | 38, 41 | bitrd 188 |
. . . . . . . . 9
|
| 43 | 2lgslem1a1 15607 |
. . . . . . . . . . . . 13
| |
| 44 | 1, 43 | sylan 283 |
. . . . . . . . . . . 12
|
| 45 | 44 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | oveq1 5958 |
. . . . . . . . . . . . 13
| |
| 47 | 46 | oveq1d 5966 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | eqeq12d 2221 |
. . . . . . . . . . . 12
|
| 49 | 48 | rspccva 2877 |
. . . . . . . . . . 11
|
| 50 | 45, 49 | sylan 283 |
. . . . . . . . . 10
|
| 51 | 50 | breq2d 4059 |
. . . . . . . . 9
|
| 52 | 42, 51 | bitrd 188 |
. . . . . . . 8
|
| 53 | oveq1 5958 |
. . . . . . . . . 10
| |
| 54 | 53 | eqcomd 2212 |
. . . . . . . . 9
|
| 55 | 54 | breq2d 4059 |
. . . . . . . 8
|
| 56 | 52, 55 | sylan9bb 462 |
. . . . . . 7
|
| 57 | 56 | pm5.32da 452 |
. . . . . 6
|
| 58 | 14, 57 | bitrid 192 |
. . . . 5
|
| 59 | 58 | rexbidva 2504 |
. . . 4
|
| 60 | 13, 59 | bitrd 188 |
. . 3
|
| 61 | 60 | bicomd 141 |
. 2
|
| 62 | 61 | rabbidva 2761 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fl 10420 df-mod 10475 df-dvds 12143 df-prm 12474 |
| This theorem is referenced by: 2lgslem1 15612 |
| Copyright terms: Public domain | W3C validator |