| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a | Unicode version | ||
| Description: Lemma 1 for 2lgslem1 15735. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12598 |
. . . . . . . . . 10
| |
| 2 | 1 | nnnn0d 9390 |
. . . . . . . . 9
|
| 3 | 2 | ad2antrr 488 |
. . . . . . . 8
|
| 4 | 4nn 9242 |
. . . . . . . 8
| |
| 5 | 3, 4 | jctir 313 |
. . . . . . 7
|
| 6 | fldivnn0 10482 |
. . . . . . 7
| |
| 7 | nn0p1nn 9376 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | 3syl 17 |
. . . . . 6
|
| 9 | elnnuz 9727 |
. . . . . 6
| |
| 10 | 8, 9 | sylib 122 |
. . . . 5
|
| 11 | fzss1 10227 |
. . . . 5
| |
| 12 | rexss 3271 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
|
| 14 | ancom 266 |
. . . . . 6
| |
| 15 | 2, 4 | jctir 313 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15, 6 | syl 14 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | nn0zd 9535 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . 14
|
| 19 | elfzelz 10189 |
. . . . . . . . . . . . . 14
| |
| 20 | zltp1le 9469 |
. . . . . . . . . . . . . 14
| |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 22 | 21 | bicomd 141 |
. . . . . . . . . . . 12
|
| 23 | 22 | anbi1d 465 |
. . . . . . . . . . 11
|
| 24 | 19 | adantl 277 |
. . . . . . . . . . . 12
|
| 25 | 17 | peano2zd 9540 |
. . . . . . . . . . . . . 14
|
| 26 | 25 | adantr 276 |
. . . . . . . . . . . . 13
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 28 | prmz 12599 |
. . . . . . . . . . . . . . 15
| |
| 29 | oddm1d2 12369 |
. . . . . . . . . . . . . . 15
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | biimpa 296 |
. . . . . . . . . . . . 13
|
| 32 | 31 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 33 | elfz 10178 |
. . . . . . . . . . . 12
| |
| 34 | 24, 27, 32, 33 | syl3anc 1252 |
. . . . . . . . . . 11
|
| 35 | elfzle2 10192 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | biantrud 304 |
. . . . . . . . . . 11
|
| 38 | 23, 34, 37 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 39 | 28 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 40 | 2lgslem1a2 15731 |
. . . . . . . . . . 11
| |
| 41 | 39, 19, 40 | syl2an 289 |
. . . . . . . . . 10
|
| 42 | 38, 41 | bitrd 188 |
. . . . . . . . 9
|
| 43 | 2lgslem1a1 15730 |
. . . . . . . . . . . . 13
| |
| 44 | 1, 43 | sylan 283 |
. . . . . . . . . . . 12
|
| 45 | 44 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | oveq1 5981 |
. . . . . . . . . . . . 13
| |
| 47 | 46 | oveq1d 5989 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | eqeq12d 2224 |
. . . . . . . . . . . 12
|
| 49 | 48 | rspccva 2886 |
. . . . . . . . . . 11
|
| 50 | 45, 49 | sylan 283 |
. . . . . . . . . 10
|
| 51 | 50 | breq2d 4074 |
. . . . . . . . 9
|
| 52 | 42, 51 | bitrd 188 |
. . . . . . . 8
|
| 53 | oveq1 5981 |
. . . . . . . . . 10
| |
| 54 | 53 | eqcomd 2215 |
. . . . . . . . 9
|
| 55 | 54 | breq2d 4074 |
. . . . . . . 8
|
| 56 | 52, 55 | sylan9bb 462 |
. . . . . . 7
|
| 57 | 56 | pm5.32da 452 |
. . . . . 6
|
| 58 | 14, 57 | bitrid 192 |
. . . . 5
|
| 59 | 58 | rexbidva 2507 |
. . . 4
|
| 60 | 13, 59 | bitrd 188 |
. . 3
|
| 61 | 60 | bicomd 141 |
. 2
|
| 62 | 61 | rabbidva 2767 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-xor 1398 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fl 10457 df-mod 10512 df-dvds 12265 df-prm 12596 |
| This theorem is referenced by: 2lgslem1 15735 |
| Copyright terms: Public domain | W3C validator |