| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a | Unicode version | ||
| Description: Lemma 1 for 2lgslem1 15778. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12640 |
. . . . . . . . . 10
| |
| 2 | 1 | nnnn0d 9430 |
. . . . . . . . 9
|
| 3 | 2 | ad2antrr 488 |
. . . . . . . 8
|
| 4 | 4nn 9282 |
. . . . . . . 8
| |
| 5 | 3, 4 | jctir 313 |
. . . . . . 7
|
| 6 | fldivnn0 10523 |
. . . . . . 7
| |
| 7 | nn0p1nn 9416 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | 3syl 17 |
. . . . . 6
|
| 9 | elnnuz 9767 |
. . . . . 6
| |
| 10 | 8, 9 | sylib 122 |
. . . . 5
|
| 11 | fzss1 10267 |
. . . . 5
| |
| 12 | rexss 3291 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
|
| 14 | ancom 266 |
. . . . . 6
| |
| 15 | 2, 4 | jctir 313 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15, 6 | syl 14 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | nn0zd 9575 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . 14
|
| 19 | elfzelz 10229 |
. . . . . . . . . . . . . 14
| |
| 20 | zltp1le 9509 |
. . . . . . . . . . . . . 14
| |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 22 | 21 | bicomd 141 |
. . . . . . . . . . . 12
|
| 23 | 22 | anbi1d 465 |
. . . . . . . . . . 11
|
| 24 | 19 | adantl 277 |
. . . . . . . . . . . 12
|
| 25 | 17 | peano2zd 9580 |
. . . . . . . . . . . . . 14
|
| 26 | 25 | adantr 276 |
. . . . . . . . . . . . 13
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 28 | prmz 12641 |
. . . . . . . . . . . . . . 15
| |
| 29 | oddm1d2 12411 |
. . . . . . . . . . . . . . 15
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | biimpa 296 |
. . . . . . . . . . . . 13
|
| 32 | 31 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 33 | elfz 10218 |
. . . . . . . . . . . 12
| |
| 34 | 24, 27, 32, 33 | syl3anc 1271 |
. . . . . . . . . . 11
|
| 35 | elfzle2 10232 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | biantrud 304 |
. . . . . . . . . . 11
|
| 38 | 23, 34, 37 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 39 | 28 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 40 | 2lgslem1a2 15774 |
. . . . . . . . . . 11
| |
| 41 | 39, 19, 40 | syl2an 289 |
. . . . . . . . . 10
|
| 42 | 38, 41 | bitrd 188 |
. . . . . . . . 9
|
| 43 | 2lgslem1a1 15773 |
. . . . . . . . . . . . 13
| |
| 44 | 1, 43 | sylan 283 |
. . . . . . . . . . . 12
|
| 45 | 44 | adantr 276 |
. . . . . . . . . . 11
|
| 46 | oveq1 6014 |
. . . . . . . . . . . . 13
| |
| 47 | 46 | oveq1d 6022 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | eqeq12d 2244 |
. . . . . . . . . . . 12
|
| 49 | 48 | rspccva 2906 |
. . . . . . . . . . 11
|
| 50 | 45, 49 | sylan 283 |
. . . . . . . . . 10
|
| 51 | 50 | breq2d 4095 |
. . . . . . . . 9
|
| 52 | 42, 51 | bitrd 188 |
. . . . . . . 8
|
| 53 | oveq1 6014 |
. . . . . . . . . 10
| |
| 54 | 53 | eqcomd 2235 |
. . . . . . . . 9
|
| 55 | 54 | breq2d 4095 |
. . . . . . . 8
|
| 56 | 52, 55 | sylan9bb 462 |
. . . . . . 7
|
| 57 | 56 | pm5.32da 452 |
. . . . . 6
|
| 58 | 14, 57 | bitrid 192 |
. . . . 5
|
| 59 | 58 | rexbidva 2527 |
. . . 4
|
| 60 | 13, 59 | bitrd 188 |
. . 3
|
| 61 | 60 | bicomd 141 |
. 2
|
| 62 | 61 | rabbidva 2787 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fl 10498 df-mod 10553 df-dvds 12307 df-prm 12638 |
| This theorem is referenced by: 2lgslem1 15778 |
| Copyright terms: Public domain | W3C validator |