ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdcl Unicode version

Theorem gcdcl 12482
Description: Closure of the  gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )

Proof of Theorem gcdcl
StepHypRef Expression
1 oveq12 6009 . . . . 5  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
2 gcd0val 12476 . . . . 5  |-  ( 0  gcd  0 )  =  0
31, 2eqtrdi 2278 . . . 4  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  0 )
4 0nn0 9380 . . . 4  |-  0  e.  NN0
53, 4eqeltrdi 2320 . . 3  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  e.  NN0 )
65adantl 277 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  e.  NN0 )
7 gcdn0cl 12478 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN )
87nnnn0d 9418 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN0 )
9 gcdmndc 12471 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
10 exmiddc 841 . . 3  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
119, 10syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
126, 8, 11mpjaodan 803 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200  (class class class)co 6000   0cc0 7995   NN0cn0 9365   ZZcz 9442    gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470
This theorem is referenced by:  gcdcld  12484  zeqzmulgcd  12486  gcdf  12488  gcdn0gt0  12494  gcd0id  12495  gcdneg  12498  gcdaddm  12500  dvdsgcdb  12529  dfgcd2  12530  gcdass  12531  mulgcd  12532  absmulgcd  12533  mulgcdr  12534  gcddiv  12535  gcdzeq  12538  dvdssqlem  12546  bezoutr  12548  bezoutr1  12549  gcddvdslcm  12590  lcmgcdlem  12594  lcmgcd  12595  6lcm4e12  12604  qredeu  12614  divgcdcoprm0  12618  divgcdcoprmex  12619  cncongr2  12621  divnumden  12713  coprimeprodsq  12775  pc2dvds  12848
  Copyright terms: Public domain W3C validator