![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdssqlem | GIF version |
Description: Lemma for dvdssq 12034. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqlem | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9274 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 9274 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | dvdssqim 12027 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
5 | sqgcd 12032 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | |
6 | 5 | adantr 276 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) |
7 | nnsqcl 10592 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ) | |
8 | nnsqcl 10592 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ) | |
9 | gcdeq 12026 | . . . . . . . 8 ⊢ (((𝑀↑2) ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) | |
10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
11 | 10 | biimpar 297 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2)) |
12 | 6, 11 | eqtrd 2210 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = (𝑀↑2)) |
13 | gcdcl 11969 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
14 | 1, 2, 13 | syl2an 289 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0red 9232 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ) |
16 | 14 | nn0ge0d 9234 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 gcd 𝑁)) |
17 | nnre 8928 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | adantr 276 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
19 | nnnn0 9185 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
20 | 19 | nn0ge0d 9234 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
21 | 20 | adantr 276 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀) |
22 | sq11 10595 | . . . . . . 7 ⊢ ((((𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) ∧ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) | |
23 | 15, 16, 18, 21, 22 | syl22anc 1239 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
24 | 23 | adantr 276 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
25 | 12, 24 | mpbid 147 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) = 𝑀) |
26 | gcddvds 11966 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
27 | 1, 2, 26 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
28 | 27 | adantr 276 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
29 | 28 | simprd 114 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) ∥ 𝑁) |
30 | 25, 29 | eqbrtrrd 4029 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → 𝑀 ∥ 𝑁) |
31 | 30 | ex 115 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∥ (𝑁↑2) → 𝑀 ∥ 𝑁)) |
32 | 4, 31 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 0cc0 7813 ≤ cle 7995 ℕcn 8921 2c2 8972 ℕ0cn0 9178 ℤcz 9255 ↑cexp 10521 ∥ cdvds 11796 gcd cgcd 11945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-fl 10272 df-mod 10325 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-dvds 11797 df-gcd 11946 |
This theorem is referenced by: dvdssq 12034 |
Copyright terms: Public domain | W3C validator |