ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptc Unicode version

Theorem dvmptc 15356
Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptid.1  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptc.2  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
dvmptc  |-  ( ph  ->  ( S  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
Distinct variable groups:    x, A    ph, x    x, S

Proof of Theorem dvmptc
StepHypRef Expression
1 dvmptc.2 . . . . . 6  |-  ( ph  ->  A  e.  CC )
2 dvconstre 15335 . . . . . 6  |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A } ) )  =  ( RR  X.  { 0 } ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  ( RR  _D  ( RR  X.  { A }
) )  =  ( RR  X.  { 0 } ) )
43adantr 276 . . . 4  |-  ( (
ph  /\  S  =  RR )  ->  ( RR 
_D  ( RR  X.  { A } ) )  =  ( RR  X.  { 0 } ) )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  S  =  RR )  ->  S  =  RR )
65xpeq1d 4719 . . . . 5  |-  ( (
ph  /\  S  =  RR )  ->  ( S  X.  { A }
)  =  ( RR 
X.  { A }
) )
75, 6oveq12d 5992 . . . 4  |-  ( (
ph  /\  S  =  RR )  ->  ( S  _D  ( S  X.  { A } ) )  =  ( RR  _D  ( RR  X.  { A } ) ) )
85xpeq1d 4719 . . . 4  |-  ( (
ph  /\  S  =  RR )  ->  ( S  X.  { 0 } )  =  ( RR 
X.  { 0 } ) )
94, 7, 83eqtr4d 2252 . . 3  |-  ( (
ph  /\  S  =  RR )  ->  ( S  _D  ( S  X.  { A } ) )  =  ( S  X.  { 0 } ) )
10 dvconst 15333 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A } ) )  =  ( CC  X.  { 0 } ) )
111, 10syl 14 . . . . 5  |-  ( ph  ->  ( CC  _D  ( CC  X.  { A }
) )  =  ( CC  X.  { 0 } ) )
1211adantr 276 . . . 4  |-  ( (
ph  /\  S  =  CC )  ->  ( CC 
_D  ( CC  X.  { A } ) )  =  ( CC  X.  { 0 } ) )
13 simpr 110 . . . . 5  |-  ( (
ph  /\  S  =  CC )  ->  S  =  CC )
1413xpeq1d 4719 . . . . 5  |-  ( (
ph  /\  S  =  CC )  ->  ( S  X.  { A }
)  =  ( CC 
X.  { A }
) )
1513, 14oveq12d 5992 . . . 4  |-  ( (
ph  /\  S  =  CC )  ->  ( S  _D  ( S  X.  { A } ) )  =  ( CC  _D  ( CC  X.  { A } ) ) )
1613xpeq1d 4719 . . . 4  |-  ( (
ph  /\  S  =  CC )  ->  ( S  X.  { 0 } )  =  ( CC 
X.  { 0 } ) )
1712, 15, 163eqtr4d 2252 . . 3  |-  ( (
ph  /\  S  =  CC )  ->  ( S  _D  ( S  X.  { A } ) )  =  ( S  X.  { 0 } ) )
18 dvmptid.1 . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
19 elpri 3669 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2018, 19syl 14 . . 3  |-  ( ph  ->  ( S  =  RR  \/  S  =  CC ) )
219, 17, 20mpjaodan 802 . 2  |-  ( ph  ->  ( S  _D  ( S  X.  { A }
) )  =  ( S  X.  { 0 } ) )
22 fconstmpt 4743 . . 3  |-  ( S  X.  { A }
)  =  ( x  e.  S  |->  A )
2322oveq2i 5985 . 2  |-  ( S  _D  ( S  X.  { A } ) )  =  ( S  _D  ( x  e.  S  |->  A ) )
24 fconstmpt 4743 . 2  |-  ( S  X.  { 0 } )  =  ( x  e.  S  |->  0 )
2521, 23, 243eqtr3g 2265 1  |-  ( ph  ->  ( S  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 712    = wceq 1375    e. wcel 2180   {csn 3646   {cpr 3647    |-> cmpt 4124    X. cxp 4694  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967    _D cdv 15294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-pm 6768  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-cncf 15210  df-limced 15295  df-dvap 15296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator