Theorem List for Intuitionistic Logic Explorer - 11601-11700 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | bdtri 11601 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
    
  inf    
   inf      inf         |
| |
| Theorem | mul0inf 11602 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 11423 and mulap0bd 8743 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
      inf                 |
| |
| Theorem | mingeb 11603 |
Equivalence of
and being equal to the minimum of two reals.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
    inf    
    |
| |
| Theorem | 2zinfmin 11604 |
Two ways to express the minimum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
   inf       
 
   |
| |
| 4.8.7 The maximum of two extended
reals
|
| |
| Theorem | xrmaxleim 11605 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
              |
| |
| Theorem | xrmaxiflemcl 11606 |
Lemma for xrmaxif 11612. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
        
   
           
       |
| |
| Theorem | xrmaxifle 11607 |
An upper bound for    in the extended reals. (Contributed by
Jim Kingdon, 26-Apr-2023.)
|
  
 
       
                   |
| |
| Theorem | xrmaxiflemab 11608 |
Lemma for xrmaxif 11612. A variation of xrmaxleim 11605- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
                    
               |
| |
| Theorem | xrmaxiflemlub 11609 |
Lemma for xrmaxif 11612. A least upper bound for    .
(Contributed by Jim Kingdon, 28-Apr-2023.)
|
                
                       |
| |
| Theorem | xrmaxiflemcom 11610 |
Lemma for xrmaxif 11612. Commutativity of an expression which we
will
later show to be the supremum. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
        
   
           
              
                   |
| |
| Theorem | xrmaxiflemval 11611* |
Lemma for xrmaxif 11612. Value of the supremum. (Contributed by
Jim
Kingdon, 29-Apr-2023.)
|
 
       
                       
       
    |
| |
| Theorem | xrmaxif 11612 |
Maximum of two extended reals in terms of expressions.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
           
           
               |
| |
| Theorem | xrmaxcl 11613 |
The maximum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 29-Apr-2023.)
|
            |
| |
| Theorem | xrmax1sup 11614 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
  
   
     |
| |
| Theorem | xrmax2sup 11615 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
  
   
     |
| |
| Theorem | xrmaxrecl 11616 |
The maximum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
|
               
   |
| |
| Theorem | xrmaxleastlt 11617 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
  
 
             |
| |
| Theorem | xrltmaxsup 11618 |
The maximum as a least upper bound. (Contributed by Jim Kingdon,
10-May-2023.)
|
                |
| |
| Theorem | xrmaxltsup 11619 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 30-Apr-2023.)
|
                |
| |
| Theorem | xrmaxlesup 11620 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 10-May-2023.)
|
                |
| |
| Theorem | xrmaxaddlem 11621 |
Lemma for xrmaxadd 11622. The case where is real. (Contributed by
Jim Kingdon, 11-May-2023.)
|
                   
         
    |
| |
| Theorem | xrmaxadd 11622 |
Distributing addition over maximum. (Contributed by Jim Kingdon,
11-May-2023.)
|
                                  |
| |
| 4.8.8 The minimum of two extended
reals
|
| |
| Theorem | xrnegiso 11623 |
Negation is an order anti-isomorphism of the extended reals, which is
its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
|

          |
| |
| Theorem | infxrnegsupex 11624* |
The infimum of a set of extended reals is the negative of the
supremum of the negatives of its elements. (Contributed by Jim Kingdon,
2-May-2023.)
|
   
         inf       
   
   |
| |
| Theorem | xrnegcon1d 11625 |
Contraposition law for extended real unary minus. (Contributed by Jim
Kingdon, 2-May-2023.)
|
        
   |
| |
| Theorem | xrminmax 11626 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
2-May-2023.)
|
   inf         
          |
| |
| Theorem | xrmincl 11627 |
The minumum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 3-May-2023.)
|
   inf        |
| |
| Theorem | xrmin1inf 11628 |
The minimum of two extended reals is less than or equal to the first.
(Contributed by Jim Kingdon, 3-May-2023.)
|
   inf        |
| |
| Theorem | xrmin2inf 11629 |
The minimum of two extended reals is less than or equal to the second.
(Contributed by Jim Kingdon, 3-May-2023.)
|
   inf        |
| |
| Theorem | xrmineqinf 11630 |
The minimum of two extended reals is equal to the second if the first is
bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim
Kingdon, 3-May-2023.)
|
   inf  
     |
| |
| Theorem | xrltmininf 11631 |
Two ways of saying an extended real is less than the minimum of two
others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
3-May-2023.)
|
    inf           |
| |
| Theorem | xrlemininf 11632 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 4-May-2023.)
|
    inf           |
| |
| Theorem | xrminltinf 11633 |
Two ways of saying an extended real is greater than the minimum of two
others. (Contributed by Jim Kingdon, 19-May-2023.)
|
   inf    
      |
| |
| Theorem | xrminrecl 11634 |
The minimum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
|
   inf      inf        |
| |
| Theorem | xrminrpcl 11635 |
The minimum of two positive reals is a positive real. (Contributed by Jim
Kingdon, 4-May-2023.)
|
   inf        |
| |
| Theorem | xrminadd 11636 |
Distributing addition over minimum. (Contributed by Jim Kingdon,
10-May-2023.)
|
   inf                   inf         |
| |
| Theorem | xrbdtri 11637 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
  
 
 
  inf         
 inf        inf    
    |
| |
| Theorem | iooinsup 11638 |
Intersection of two open intervals of extended reals. (Contributed by
NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
|
  
 
                     inf         |
| |
| 4.9 Elementary limits and
convergence
|
| |
| 4.9.1 Limits
|
| |
| Syntax | cli 11639 |
Extend class notation with convergence relation for limits.
|
 |
| |
| Definition | df-clim 11640* |
Define the limit relation for complex number sequences. See clim 11642
for
its relational expression. (Contributed by NM, 28-Aug-2005.)
|
    
                           |
| |
| Theorem | climrel 11641 |
The limit relation is a relation. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
 |
| |
| Theorem | clim 11642* |
Express the predicate: The limit of complex number sequence is
, or converges to . This means that for any
real
, no matter how
small, there always exists an integer such
that the absolute difference of any later complex number in the sequence
and the limit is less than . (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 28-Apr-2015.)
|
          
    
                 |
| |
| Theorem | climcl 11643 |
Closure of the limit of a sequence of complex numbers. (Contributed by
NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
|

  |
| |
| Theorem | clim2 11644* |
Express the predicate: The limit of complex number sequence is
, or converges to , with more general
quantifier
restrictions than clim 11642. (Contributed by NM, 6-Jan-2007.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
                                       |
| |
| Theorem | clim2c 11645* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                   
      
          
   |
| |
| Theorem | clim0 11646* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                 
  
              |
| |
| Theorem | clim0c 11647* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                     
  
            |
| |
| Theorem | climi 11648* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                                    |
| |
| Theorem | climi2 11649* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                                  |
| |
| Theorem | climi0 11650* |
Convergence of a sequence of complex numbers to zero. (Contributed by
NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                                |
| |
| Theorem | climconst 11651* |
An (eventually) constant sequence converges to its value. (Contributed
by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
                  
  |
| |
| Theorem | climconst2 11652 |
A constant sequence converges to its value. (Contributed by NM,
6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
          
  |
| |
| Theorem | climz 11653 |
The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
   
 |
| |
| Theorem | climuni 11654 |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro,
31-Jan-2014.)
|
 
   |
| |
| Theorem | fclim 11655 |
The limit relation is function-like, and with codomian the complex
numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
|
   |
| |
| Theorem | climdm 11656 |
Two ways to express that a function has a limit. (The expression
  is sometimes useful as a shorthand for "the unique limit
of the function "). (Contributed by Mario Carneiro,
18-Mar-2014.)
|
     |
| |
| Theorem | climeu 11657* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|


  |
| |
| Theorem | climreu 11658* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|

   |
| |
| Theorem | climmo 11659* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by Mario Carneiro, 13-Jul-2013.)
|

 |
| |
| Theorem | climeq 11660* |
Two functions that are eventually equal to one another have the same
limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario
Carneiro, 31-Jan-2014.)
|
                      
    |
| |
| Theorem | climmpt 11661* |
Exhibit a function
with the same convergence properties as the
not-quite-function . (Contributed by Mario Carneiro,
31-Jan-2014.)
|
             
   |
| |
| Theorem | 2clim 11662* |
If two sequences converge to each other, they converge to the same
limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario
Carneiro, 31-Jan-2014.)
|
                                             |
| |
| Theorem | climshftlemg 11663 |
A shifted function converges if the original function converges.
(Contributed by Mario Carneiro, 5-Nov-2013.)
|
   
 
   |
| |
| Theorem | climres 11664 |
A function restricted to upper integers converges iff the original
function converges. (Contributed by Mario Carneiro, 13-Jul-2013.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
         
   |
| |
| Theorem | climshft 11665 |
A shifted function converges iff the original function converges.
(Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
     
   |
| |
| Theorem | serclim0 11666 |
The zero series converges to zero. (Contributed by Paul Chapman,
9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
|
           
  |
| |
| Theorem | climshft2 11667* |
A shifted function converges iff the original function converges.
(Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario
Carneiro, 6-Feb-2014.)
|
             
             
   |
| |
| Theorem | climabs0 11668* |
Convergence to zero of the absolute value is equivalent to convergence
to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
                   
               
   |
| |
| Theorem | climcn1 11669* |
Image of a limit under a continuous map. (Contributed by Mario
Carneiro, 31-Jan-2014.)
|
                     

                                                        |
| |
| Theorem | climcn2 11670* |
Image of a limit under a continuous map, two-arg version. (Contributed
by Mario Carneiro, 31-Jan-2014.)
|
            
 
            

                                                                       
      |
| |
| Theorem | addcn2 11671* |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243. (We write
out the definition directly
because df-cn and df-cncf are not yet available to us. See addcncntop 15084
for the abbreviated version.) (Contributed by Mario Carneiro,
31-Jan-2014.)
|
 
            
     
              |
| |
| Theorem | subcn2 11672* |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
 
            
     
              |
| |
| Theorem | mulcn2 11673* |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
 
            
     
              |
| |
| Theorem | reccn2ap 11674* |
The reciprocal function is continuous. The class is just for
convenience in writing the proof and typically would be passed in as an
instance of eqid 2206. (Contributed by Mario Carneiro,
9-Feb-2014.)
Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
|
inf                     #
 
  #
            
        |
| |
| Theorem | cn1lem 11675* |
A sufficient condition for a function to be continuous. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
                    
                                    |
| |
| Theorem | abscn2 11676* |
The absolute value function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
           
                 |
| |
| Theorem | cjcn2 11677* |
The complex conjugate function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
           
       
         |
| |
| Theorem | recn2 11678* |
The real part function is continuous. (Contributed by Mario Carneiro,
9-Feb-2014.)
|
           
       
         |
| |
| Theorem | imcn2 11679* |
The imaginary part function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
           
       
         |
| |
| Theorem | climcn1lem 11680* |
The limit of a continuous function, theorem form. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
                                 
       
                        
      |
| |
| Theorem | climabs 11681* |
Limit of the absolute value of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
                                         |
| |
| Theorem | climcj 11682* |
Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of [Gleason] p. 172. (Contributed by
NM, 7-Jun-2006.) (Revised by
Mario Carneiro, 9-Feb-2014.)
|
                                  
      |
| |
| Theorem | climre 11683* |
Limit of the real part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
                                  
      |
| |
| Theorem | climim 11684* |
Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
                                  
      |
| |
| Theorem | climrecl 11685* |
The limit of a convergent real sequence is real. Corollary 12-2.5 of
[Gleason] p. 172. (Contributed by NM,
10-Sep-2005.)
|
      
  
         |
| |
| Theorem | climge0 11686* |
A nonnegative sequence converges to a nonnegative number. (Contributed
by NM, 11-Sep-2005.)
|
      
  
        
     
  |
| |
| Theorem | climadd 11687* |
Limit of the sum of two converging sequences. Proposition 12-2.1(a)
of [Gleason] p. 168. (Contributed
by NM, 24-Sep-2005.) (Proof
shortened by Mario Carneiro, 31-Jan-2014.)
|
      
              
                        
    |
| |
| Theorem | climmul 11688* |
Limit of the product of two converging sequences. Proposition
12-2.1(c) of [Gleason] p. 168.
(Contributed by NM, 27-Dec-2005.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
      
              
                        
    |
| |
| Theorem | climsub 11689* |
Limit of the difference of two converging sequences. Proposition
12-2.1(b) of [Gleason] p. 168.
(Contributed by NM, 4-Aug-2007.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
      
              
                        
    |
| |
| Theorem | climaddc1 11690* |
Limit of a constant
added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
      
              
         
   
   |
| |
| Theorem | climaddc2 11691* |
Limit of a constant
added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
      
              
             
   |
| |
| Theorem | climmulc2 11692* |
Limit of a sequence multiplied by a constant . Corollary
12-2.2 of [Gleason] p. 171.
(Contributed by NM, 24-Sep-2005.)
(Revised by Mario Carneiro, 3-Feb-2014.)
|
      
              
             
   |
| |
| Theorem | climsubc1 11693* |
Limit of a constant
subtracted from each term of a sequence.
(Contributed by Mario Carneiro, 9-Feb-2014.)
|
      
              
         
   
   |
| |
| Theorem | climsubc2 11694* |
Limit of a constant
minus each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
9-Feb-2014.)
|
      
              
             
   |
| |
| Theorem | climle 11695* |
Comparison of the limits of two sequences. (Contributed by Paul
Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
|
      
 
  
               
             |
| |
| Theorem | climsqz 11696* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by
Mario Carneiro, 3-Feb-2014.)
|
      
                    
                
 
  |
| |
| Theorem | climsqz2 11697* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised
by Mario Carneiro, 3-Feb-2014.)
|
      
                    
            
        |
| |
| Theorem | clim2ser 11698* |
The limit of an infinite series with an initial segment removed.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
       
         
      
          |
| |
| Theorem | clim2ser2 11699* |
The limit of an infinite series with an initial segment added.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
       
           
    
          |
| |
| Theorem | iserex 11700* |
An infinite series converges, if and only if the series does with
initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.)
(Revised by Mario Carneiro, 27-Apr-2014.)
|
       
         
  
  |