Theorem List for Intuitionistic Logic Explorer - 11601-11700   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | fsumxp 11601* | 
Combine two sums into a single sum over the cartesian product.
       (Contributed by Mario Carneiro, 23-Apr-2014.)
 | 
                                                                                         
      
                                      
                | 
|   | 
| Theorem | fsumcnv 11602* | 
Transform a region of summation by using the converse operation.
       (Contributed by Mario Carneiro, 23-Apr-2014.)
 | 
                                                
                                                                                                           | 
|   | 
| Theorem | fisumcom2 11603* | 
Interchange order of summation.  Note that      and     
       are not necessarily constant expressions.  (Contributed by Mario
       Carneiro, 28-Apr-2014.)  (Revised by Mario Carneiro, 8-Apr-2016.)
       (Proof shortened by JJ, 2-Aug-2021.)
 | 
                                             
                                                                                                                             
      
                                      
                  | 
|   | 
| Theorem | fsumcom 11604* | 
Interchange order of summation.  (Contributed by NM, 15-Nov-2005.)
       (Revised by Mario Carneiro, 23-Apr-2014.)
 | 
                                             
                         
                                                    | 
|   | 
| Theorem | fsum0diaglem 11605* | 
Lemma for fisum0diag 11606.  (Contributed by Mario Carneiro,
28-Apr-2014.)
       (Revised by Mario Carneiro, 8-Apr-2016.)
 | 
                                                   
               | 
|   | 
| Theorem | fisum0diag 11606* | 
Two ways to express "the sum of         over the
triangular
       region      ,      ,        
 ".  (Contributed
by NM,
       31-Dec-2005.)  (Proof shortened by Mario Carneiro, 28-Apr-2014.)
       (Revised by Mario Carneiro, 8-Apr-2016.)
 | 
                        
                                                                                                                    | 
|   | 
| Theorem | mptfzshft 11607* | 
1-1 onto function in maps-to notation which shifts a finite set of
       sequential integers.  (Contributed by AV, 24-Aug-2019.)
 | 
                                                                                                                              | 
|   | 
| Theorem | fsumrev 11608* | 
Reversal of a finite sum.  (Contributed by NM, 26-Nov-2005.)  (Revised
         by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                              
                                
                                
                   
         | 
|   | 
| Theorem | fsumshft 11609* | 
Index shift of a finite sum.  (Contributed by NM, 27-Nov-2005.)
         (Revised by Mario Carneiro, 24-Apr-2014.)  (Proof shortened by AV,
         8-Sep-2019.)
 | 
                                                                              
                                                                
                   
         | 
|   | 
| Theorem | fsumshftm 11610* | 
Negative index shift of a finite sum.  (Contributed by NM,
         28-Nov-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                              
                                                                
                   
         | 
|   | 
| Theorem | fisumrev2 11611* | 
Reversal of a finite sum.  (Contributed by NM, 27-Nov-2005.)  (Revised
       by Mario Carneiro, 13-Apr-2016.)
 | 
                                             
             
                               
       
                                
                | 
|   | 
| Theorem | fisum0diag2 11612* | 
Two ways to express "the sum of         over the
triangular
       region      ,    
 ,      
   ".  (Contributed by
       Mario Carneiro, 21-Jul-2014.)
 | 
                            
                                                  
                                                                                                              | 
|   | 
| Theorem | fsummulc2 11613* | 
A finite sum multiplied by a constant.  (Contributed by NM,
       12-Nov-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                             
                                              
                   | 
|   | 
| Theorem | fsummulc1 11614* | 
A finite sum multiplied by a constant.  (Contributed by NM,
       13-Nov-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                             
                                                                 | 
|   | 
| Theorem | fsumdivapc 11615* | 
A finite sum divided by a constant.  (Contributed by NM, 2-Jan-2006.)
       (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                             
                                  #                                                  | 
|   | 
| Theorem | fsumneg 11616* | 
Negation of a finite sum.  (Contributed by Scott Fenton, 12-Jun-2013.)
       (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                | 
|   | 
| Theorem | fsumsub 11617* | 
Split a finite sum over a subtraction.  (Contributed by Scott Fenton,
       12-Jun-2013.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                       
                                              
                          | 
|   | 
| Theorem | fsum2mul 11618* | 
Separate the nested sum of the product            .
       (Contributed by NM, 13-Nov-2005.)  (Revised by Mario Carneiro,
       24-Apr-2014.)
 | 
                                             
                                                                                                             | 
|   | 
| Theorem | fsumconst 11619* | 
The sum of constant terms (  is not free in  ).  (Contributed
       by NM, 24-Dec-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                       
        
   ♯          | 
|   | 
| Theorem | fsumdifsnconst 11620* | 
The sum of constant terms (  is not free in  ) over an index
       set excluding a singleton.  (Contributed by AV, 7-Jan-2022.)
 | 
                       
        
                   ♯               | 
|   | 
| Theorem | modfsummodlem1 11621* | 
Lemma for modfsummod 11623.  (Contributed by Alexander van der Vekens,
       1-Sep-2018.)
 | 
                               ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | modfsummodlemstep 11622* | 
Induction step for modfsummod 11623.  (Contributed by Alexander van der
         Vekens, 1-Sep-2018.)  (Revised by Jim Kingdon, 12-Oct-2022.)
 | 
                                                                                                          
                        
                            
                    
                              | 
|   | 
| Theorem | modfsummod 11623* | 
A finite sum modulo a positive integer equals the finite sum of their
       summands modulo the positive integer, modulo the positive integer.
       (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 | 
                                                         
                                 
                       | 
|   | 
| Theorem | fsumge0 11624* | 
If all of the terms of a finite sum are nonnegative, so is the sum.
       (Contributed by NM, 26-Dec-2005.)  (Revised by Mario Carneiro,
       24-Apr-2014.)
 | 
                                                       
                                      
        | 
|   | 
| Theorem | fsumlessfi 11625* | 
A shorter sum of nonnegative terms is no greater than a longer one.
         (Contributed by NM, 26-Dec-2005.)  (Revised by Jim Kingdon,
         12-Oct-2022.)
 | 
                                                       
                                                                                             | 
|   | 
| Theorem | fsumge1 11626* | 
A sum of nonnegative numbers is greater than or equal to any one of
         its terms.  (Contributed by Jeff Madsen, 2-Sep-2009.)  (Proof
         shortened by Mario Carneiro, 4-Jun-2014.)
 | 
                                                       
                                   
                                                       | 
|   | 
| Theorem | fsum00 11627* | 
A sum of nonnegative numbers is zero iff all terms are zero.
       (Contributed by Jeff Madsen, 2-Sep-2009.)  (Proof shortened by Mario
       Carneiro, 24-Apr-2014.)
 | 
                                                       
                                             
             
     | 
|   | 
| Theorem | fsumle 11628* | 
If all of the terms of finite sums compare, so do the sums.
       (Contributed by NM, 11-Dec-2005.)  (Proof shortened by Mario Carneiro,
       24-Apr-2014.)
 | 
                                                       
                                             
                                      | 
|   | 
| Theorem | fsumlt 11629* | 
If every term in one finite sum is less than the corresponding term in
       another, then the first sum is less than the second.  (Contributed by
       Jeff Madsen, 2-Sep-2009.)  (Revised by Mario Carneiro, 3-Jun-2014.)
 | 
                                                                           
                                                             
                      | 
|   | 
| Theorem | fsumabs 11630* | 
Generalized triangle inequality: the absolute value of a finite sum is
       less than or equal to the sum of absolute values.  (Contributed by NM,
       9-Nov-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                      | 
|   | 
| Theorem | telfsumo 11631* | 
Sum of a telescoping series, using half-open intervals.  (Contributed by
       Mario Carneiro, 2-May-2016.)
 | 
                            
                              
                        
                          
                                    
                              ..^           
          | 
|   | 
| Theorem | telfsumo2 11632* | 
Sum of a telescoping series.  (Contributed by Mario Carneiro,
       2-May-2016.)
 | 
                            
                              
                        
                          
                                    
                              ..^           
          | 
|   | 
| Theorem | telfsum 11633* | 
Sum of a telescoping series.  (Contributed by Scott Fenton,
       24-Apr-2014.)  (Revised by Mario Carneiro, 2-May-2016.)
 | 
                            
                              
                        
       
                         
                                                                                                                        | 
|   | 
| Theorem | telfsum2 11634* | 
Sum of a telescoping series.  (Contributed by Mario Carneiro,
       15-Jun-2014.)  (Revised by Mario Carneiro, 2-May-2016.)
 | 
                            
                              
                        
       
                         
                                                                                                                        | 
|   | 
| Theorem | fsumparts 11635* | 
Summation by parts.  (Contributed by Mario Carneiro, 13-Apr-2016.)
 | 
                                                  
       
                                        
                                                                                                            
             
                              ..^                                                ..^                  | 
|   | 
| Theorem | fsumrelem 11636* | 
Lemma for fsumre 11637, fsumim 11638, and fsumcj 11639.  (Contributed by Mario
         Carneiro, 25-Jul-2014.)  (Revised by Mario Carneiro, 27-Dec-2014.)
 | 
                                                                                                         
                                    
                 | 
|   | 
| Theorem | fsumre 11637* | 
The real part of a sum.  (Contributed by Paul Chapman, 9-Nov-2007.)
       (Revised by Mario Carneiro, 25-Jul-2014.)
 | 
                                                                       
               | 
|   | 
| Theorem | fsumim 11638* | 
The imaginary part of a sum.  (Contributed by Paul Chapman, 9-Nov-2007.)
       (Revised by Mario Carneiro, 25-Jul-2014.)
 | 
                                                                       
               | 
|   | 
| Theorem | fsumcj 11639* | 
The complex conjugate of a sum.  (Contributed by Paul Chapman,
       9-Nov-2007.)  (Revised by Mario Carneiro, 25-Jul-2014.)
 | 
                                                                       
               | 
|   | 
| Theorem | iserabs 11640* | 
Generalized triangle inequality: the absolute value of an infinite sum
       is less than or equal to the sum of absolute values.  (Contributed by
       Paul Chapman, 10-Sep-2007.)  (Revised by Jim Kingdon, 14-Dec-2022.)
 | 
                                   
                               
                                                                                                                            | 
|   | 
| Theorem | cvgcmpub 11641* | 
An upper bound for the limit of a real infinite series.  This theorem
       can also be used to compare two infinite series.  (Contributed by Mario
       Carneiro, 24-Mar-2014.)
 | 
                                           
                                                                                  
                             
               
                                               | 
|   | 
| Theorem | fsumiun 11642* | 
Sum over a disjoint indexed union.  (Contributed by Mario Carneiro,
         1-Jul-2015.)  (Revised by Mario Carneiro, 10-Dec-2016.)
 | 
                                                         Disj                            
        
      
                                    
                    | 
|   | 
| Theorem | hashiun 11643* | 
The cardinality of a disjoint indexed union.  (Contributed by Mario
       Carneiro, 24-Jan-2015.)  (Revised by Mario Carneiro, 10-Dec-2016.)
 | 
                                                         Disj                        ♯          
           ♯     | 
|   | 
| Theorem | hash2iun 11644* | 
The cardinality of a nested disjoint indexed union.  (Contributed by AV,
       9-Jan-2022.)
 | 
                                                       
                                        Disj                            
            Disj                        ♯                   
                ♯     | 
|   | 
| Theorem | hash2iun1dif1 11645* | 
The cardinality of a nested disjoint indexed union.  (Contributed by AV,
       9-Jan-2022.)
 | 
                                                             
                          Disj           
                             Disj                     
                     ♯                       ♯                   
   ♯        ♯           | 
|   | 
| Theorem | hashrabrex 11646* | 
The number of elements in a class abstraction with a restricted
       existential quantification.  (Contributed by Alexander van der Vekens,
       29-Jul-2018.)
 | 
                                                                   Disj                                  ♯                               ♯               | 
|   | 
| Theorem | hashuni 11647* | 
The cardinality of a disjoint union.  (Contributed by Mario Carneiro,
       24-Jan-2015.)
 | 
                                               Disj                        ♯         
      ♯     | 
|   | 
| 4.9.3  The binomial theorem
 | 
|   | 
| Theorem | binomlem 11648* | 
Lemma for binom 11649 (binomial theorem).  Inductive step. 
(Contributed by
       NM, 6-Dec-2005.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                   
                                                                                                                                                 | 
|   | 
| Theorem | binom 11649* | 
The binomial theorem:           is the sum from       to
         of                               .  Theorem
       15-2.8 of [Gleason] p. 296.  This part
of the proof sets up the
       induction and does the base case, with the bulk of the work (the
       induction step) in binomlem 11648.  This is Metamath 100 proof #44.
       (Contributed by NM, 7-Dec-2005.)  (Proof shortened by Mario Carneiro,
       24-Apr-2014.)
 | 
                                          
                                              | 
|   | 
| Theorem | binom1p 11650* | 
Special case of the binomial theorem for          .
       (Contributed by Paul Chapman, 10-May-2007.)
 | 
                                
                                | 
|   | 
| Theorem | binom11 11651* | 
Special case of the binomial theorem for    . 
(Contributed by
       Mario Carneiro, 13-Mar-2014.)
 | 
                  
                    | 
|   | 
| Theorem | binom1dif 11652* | 
A summation for the difference between             and
            . 
(Contributed by Scott Fenton, 9-Apr-2014.)  (Revised by
       Mario Carneiro, 22-May-2014.)
 | 
                                                                     
           | 
|   | 
| Theorem | bcxmaslem1 11653 | 
Lemma for bcxmas 11654.  (Contributed by Paul Chapman,
18-May-2007.)
 | 
                   
                       | 
|   | 
| Theorem | bcxmas 11654* | 
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
       (Contributed by Paul Chapman, 18-May-2007.)  (Revised by Mario Carneiro,
       24-Apr-2014.)
 | 
                                   
                            
     | 
|   | 
| 4.9.4  Infinite sums (cont.)
 | 
|   | 
| Theorem | isumshft 11655* | 
Index shift of an infinite sum.  (Contributed by Paul Chapman,
       31-Oct-2007.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                              
                                                                                                 
           | 
|   | 
| Theorem | isumsplit 11656* | 
Split off the first  
terms of an infinite sum.  (Contributed by
       Paul Chapman, 9-Feb-2008.)  (Revised by Jim Kingdon, 21-Oct-2022.)
 | 
                                                                                                                                                              
               
                             | 
|   | 
| Theorem | isum1p 11657* | 
The infinite sum of a converging infinite series equals the first term
       plus the infinite sum of the rest of it.  (Contributed by NM,
       2-Jan-2006.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                           
                                                                                                 
                    
                     | 
|   | 
| Theorem | isumnn0nn 11658* | 
Sum from 0 to infinity in terms of sum from 1 to infinity.  (Contributed
       by NM, 2-Jan-2006.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                                                              
         
       
            | 
|   | 
| Theorem | isumrpcl 11659* | 
The infinite sum of positive reals is positive.  (Contributed by Paul
       Chapman, 9-Feb-2008.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                                                                                              
               | 
|   | 
| Theorem | isumle 11660* | 
Comparison of two infinite sums.  (Contributed by Paul Chapman,
       13-Nov-2007.)  (Revised by Mario Carneiro, 24-Apr-2014.)
 | 
                                           
                                                                
                                                                
                                          
                     
               
                                       | 
|   | 
| Theorem | isumlessdc 11661* | 
A finite sum of nonnegative numbers is less than or equal to its limit.
       (Contributed by Mario Carneiro, 24-Apr-2014.)
 | 
                                                                                                                      
        DECID                                                              
                  
               
                                       | 
|   | 
| 4.9.5  Miscellaneous converging and diverging
 sequences
 | 
|   | 
| Theorem | divcnv 11662* | 
The sequence of reciprocals of positive integers, multiplied by the
       factor  ,
converges to zero.  (Contributed by NM, 6-Feb-2008.)
       (Revised by Jim Kingdon, 22-Oct-2022.)
 | 
                      
      
      | 
|   | 
| 4.9.6  Arithmetic series
 | 
|   | 
| Theorem | arisum 11663* | 
Arithmetic series sum of the first   positive integers.  This is
       Metamath 100 proof #68.  (Contributed by FL, 16-Nov-2006.)  (Proof
       shortened by Mario Carneiro, 22-May-2014.)
 | 
                                            | 
|   | 
| Theorem | arisum2 11664* | 
Arithmetic series sum of the first   nonnegative integers.
       (Contributed by Mario Carneiro, 17-Apr-2015.)  (Proof shortened by AV,
       2-Aug-2021.)
 | 
                                                  | 
|   | 
| Theorem | trireciplem 11665 | 
Lemma for trirecip 11666.  Show that the sum converges.  (Contributed
by
       Scott Fenton, 22-Apr-2014.)  (Revised by Mario Carneiro,
       22-May-2014.)
 | 
                           
                           
     | 
|   | 
| Theorem | trirecip 11666 | 
The sum of the reciprocals of the triangle numbers converge to two.
       This is Metamath 100 proof #42.  (Contributed by Scott Fenton,
       23-Apr-2014.)  (Revised by Mario Carneiro, 22-May-2014.)
 | 
    
                             | 
|   | 
| 4.9.7  Geometric series
 | 
|   | 
| Theorem | expcnvap0 11667* | 
A sequence of powers of a complex number   with absolute value
       smaller than 1 converges to zero.  (Contributed by NM, 8-May-2006.)
       (Revised by Jim Kingdon, 23-Oct-2022.)
 | 
                                                     #                     
                 | 
|   | 
| Theorem | expcnvre 11668* | 
A sequence of powers of a nonnegative real number less than one
       converges to zero.  (Contributed by Jim Kingdon, 28-Oct-2022.)
 | 
                                                                       
                 | 
|   | 
| Theorem | expcnv 11669* | 
A sequence of powers of a complex number   with absolute value
       smaller than 1 converges to zero.  (Contributed by NM, 8-May-2006.)
       (Revised by Jim Kingdon, 28-Oct-2022.)
 | 
                                                       
                 | 
|   | 
| Theorem | explecnv 11670* | 
A sequence of terms converges to zero when it is less than powers of a
       number   whose
absolute value is smaller than 1.  (Contributed by
       NM, 19-Jul-2008.)  (Revised by Mario Carneiro, 26-Apr-2014.)
 | 
                                                                                                                                             
                                                   | 
|   | 
| Theorem | geosergap 11671* | 
The value of the finite geometric series                  ...
                  .  (Contributed by Mario Carneiro, 2-May-2016.)
       (Revised by Jim Kingdon, 24-Oct-2022.)
 | 
                             #                                                                    ..^                                       | 
|   | 
| Theorem | geoserap 11672* | 
The value of the finite geometric series    
           ...
                  .  This is Metamath 100 proof #66.  (Contributed by
       NM, 12-May-2006.)  (Revised by Jim Kingdon, 24-Oct-2022.)
 | 
                             #                                                                                      | 
|   | 
| Theorem | pwm1geoserap1 11673* | 
The n-th power of a number decreased by 1 expressed by the finite
       geometric series  
             ...            .
       (Contributed by AV, 14-Aug-2021.)  (Revised by Jim Kingdon,
       24-Oct-2022.)
 | 
                                                 #                                       
                           | 
|   | 
| Theorem | absltap 11674 | 
Less-than of absolute value implies apartness.  (Contributed by Jim
       Kingdon, 29-Oct-2022.)
 | 
                                                                         #    | 
|   | 
| Theorem | absgtap 11675 | 
Greater-than of absolute value implies apartness.  (Contributed by Jim
       Kingdon, 29-Oct-2022.)
 | 
                                                                         #    | 
|   | 
| Theorem | geolim 11676* | 
The partial sums in the infinite series    
         ...
         converge to              .  (Contributed by NM,
         15-May-2006.)
 | 
                                                                                        
                             | 
|   | 
| Theorem | geolim2 11677* | 
The partial sums in the geometric series                ...
       converge to                  . 
(Contributed by NM,
       6-Jun-2006.)  (Revised by Mario Carneiro, 26-Apr-2014.)
 | 
                                                                                                                           
                      | 
|   | 
| Theorem | georeclim 11678* | 
The limit of a geometric series of reciprocals.  (Contributed by Paul
       Chapman, 28-Dec-2007.)  (Revised by Mario Carneiro, 26-Apr-2014.)
 | 
                                                                                              
                             | 
|   | 
| Theorem | geo2sum 11679* | 
The value of the finite geometric series              ...
             ,
multiplied by a constant.  (Contributed by Mario
       Carneiro, 17-Mar-2014.)  (Revised by Mario Carneiro, 26-Apr-2014.)
 | 
                                                    
            | 
|   | 
| Theorem | geo2sum2 11680* | 
The value of the finite geometric series    
           ...
                  .  (Contributed by Mario Carneiro, 7-Sep-2016.)
 | 
                  ..^                
       | 
|   | 
| Theorem | geo2lim 11681* | 
The value of the infinite geometric series
                    ... , multiplied by a constant.  (Contributed
       by Mario Carneiro, 15-Jun-2014.)
 | 
                                      
                   
    | 
|   | 
| Theorem | geoisum 11682* | 
The infinite sum of              ... is
             .
       (Contributed by NM, 15-May-2006.)  (Revised by Mario Carneiro,
       26-Apr-2014.)
 | 
                                                       | 
|   | 
| Theorem | geoisumr 11683* | 
The infinite sum of reciprocals
                                ... is            .
       (Contributed by rpenner, 3-Nov-2007.)  (Revised by Mario Carneiro,
       26-Apr-2014.)
 | 
                                                             | 
|   | 
| Theorem | geoisum1 11684* | 
The infinite sum of          ... is              .
       (Contributed by NM, 1-Nov-2007.)  (Revised by Mario Carneiro,
       26-Apr-2014.)
 | 
                                                       | 
|   | 
| Theorem | geoisum1c 11685* | 
The infinite sum of  
                   ... is
                        .  (Contributed by NM, 2-Nov-2007.)  (Revised
       by Mario Carneiro, 26-Apr-2014.)
 | 
                                                              
             | 
|   | 
| Theorem | 0.999... 11686 | 
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
     0.09 + 0.009 + ... i.e.                               
        , is exactly equal to
1.  (Contributed by NM, 2-Nov-2007.)
     (Revised by AV, 8-Sep-2021.)
 | 
    
           ;           | 
|   | 
| Theorem | geoihalfsum 11687 | 
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
     1.  Uses geoisum1 11684.  This is a representation of .111... in
binary with
     an infinite number of 1's.  Theorem 0.999... 11686 proves a similar claim for
     .999... in base 10.  (Contributed by David A. Wheeler, 4-Jan-2017.)
     (Proof shortened by AV, 9-Jul-2022.)
 | 
    
                     | 
|   | 
| 4.9.8  Ratio test for infinite series
 convergence
 | 
|   | 
| Theorem | cvgratnnlembern 11688 | 
Lemma for cvgratnn 11696.  Upper bound for a geometric progression of
       positive ratio less than one.  (Contributed by Jim Kingdon,
       24-Nov-2022.)
 | 
                                                                                                             
             | 
|   | 
| Theorem | cvgratnnlemnexp 11689* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon, 15-Nov-2022.)
 | 
                                                                                                                                                                                                                          | 
|   | 
| Theorem | cvgratnnlemmn 11690* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon,
           15-Nov-2022.)
 | 
                                                                                                                                                                                                          
          
                              | 
|   | 
| Theorem | cvgratnnlemseq 11691* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon,
           21-Nov-2022.)
 | 
                                                                                                                                                                                                          
                                                              | 
|   | 
| Theorem | cvgratnnlemabsle 11692* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon,
           21-Nov-2022.)
 | 
                                                                                                                                                                                                          
      
                                      
                            | 
|   | 
| Theorem | cvgratnnlemsumlt 11693* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon,
           23-Nov-2022.)
 | 
                                                                                                                                                                                                          
                            
                  | 
|   | 
| Theorem | cvgratnnlemfm 11694* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon, 23-Nov-2022.)
 | 
                                                                                                                                                                                                                                                    | 
|   | 
| Theorem | cvgratnnlemrate 11695* | 
Lemma for cvgratnn 11696.  (Contributed by Jim Kingdon, 21-Nov-2022.)
 | 
                                                                                                                                                                                                          
                                                                                                                  | 
|   | 
| Theorem | cvgratnn 11696* | 
Ratio test for convergence of a complex infinite series.  If the ratio
           of the
absolute values of successive terms in an infinite
         sequence   is
less than 1 for all terms, then the infinite sum of
         the terms of  
converges to a complex number.  Although this
         theorem is similar to cvgratz 11697 and cvgratgt0 11698, the decision to
         index starting at one is not merely cosmetic, as proving convergence
         using climcvg1n 11515 is sensitive to how a sequence is indexed.
         (Contributed by NM, 26-Apr-2005.)  (Revised by Jim Kingdon,
         12-Nov-2022.)
 | 
                                                                                                                                                                           
    
   | 
|   | 
| Theorem | cvgratz 11697* | 
Ratio test for convergence of a complex infinite series.  If the ratio
         of the
absolute values of successive terms in an infinite sequence
         is less than 1
for all terms, then the infinite sum of the terms
       of   converges
to a complex number.  (Contributed by NM,
       26-Apr-2005.)  (Revised by Jim Kingdon, 11-Nov-2022.)
 | 
                                                                                                       
                                                                                                   
       
    
   | 
|   | 
| Theorem | cvgratgt0 11698* | 
Ratio test for convergence of a complex infinite series.  If the ratio
         of the
absolute values of successive terms in an infinite sequence
         is less than 1
for all terms beyond some index  , then the
       infinite sum of the terms of   converges to a complex number.
       (Contributed by NM, 26-Apr-2005.)  (Revised by Jim Kingdon,
       11-Nov-2022.)
 | 
                                                                                                                                                                                                                            
       
    
   | 
|   | 
| 4.9.9  Mertens' theorem
 | 
|   | 
| Theorem | mertenslemub 11699* | 
Lemma for mertensabs 11702.  An upper bound for  .  (Contributed by
       Jim Kingdon, 3-Dec-2022.)
 | 
                                                                                                     
                                                                                                                
                                         | 
|   | 
| Theorem | mertenslemi1 11700* | 
Lemma for mertensabs 11702.  (Contributed by Mario Carneiro,
           29-Apr-2014.)  (Revised by Jim Kingdon, 2-Dec-2022.)
 | 
                                                                             
                                                                                                                                                                      
                     
             
    
                                                                                                                                                             
        
                           
                                
                                        
                                                                                                                         
               |