ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag GIF version

Theorem fisum0diag 10896
Description: Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 𝑀𝑗, 𝑀𝑘, 𝑗 + 𝑘𝑁." (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypotheses
Ref Expression
fsum0diag.1 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
fisum0diag.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
fisum0diag (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑘))𝐴)
Distinct variable groups:   𝑗,𝑘,𝑁   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)

Proof of Theorem fisum0diag
StepHypRef Expression
1 0zd 8823 . . 3 (𝜑 → 0 ∈ ℤ)
2 fisum0diag.n . . 3 (𝜑𝑁 ∈ ℤ)
31, 2fzfigd 9899 . 2 (𝜑 → (0...𝑁) ∈ Fin)
4 0zd 8823 . . 3 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ∈ ℤ)
52adantr 271 . . . 4 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
6 elfzelz 9501 . . . . 5 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
76adantl 272 . . . 4 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ)
85, 7zsubcld 8934 . . 3 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁𝑗) ∈ ℤ)
94, 8fzfigd 9899 . 2 ((𝜑𝑗 ∈ (0...𝑁)) → (0...(𝑁𝑗)) ∈ Fin)
10 0zd 8823 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → 0 ∈ ℤ)
112adantr 271 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
12 elfzelz 9501 . . . . 5 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
1312adantl 272 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
1411, 13zsubcld 8934 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
1510, 14fzfigd 9899 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → (0...(𝑁𝑘)) ∈ Fin)
16 fsum0diaglem 10895 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
17 fsum0diaglem 10895 . . . 4 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))) → (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))))
1816, 17impbii 125 . . 3 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
1918a1i 9 . 2 (𝜑 → ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘)))))
20 fsum0diag.1 . 2 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
213, 3, 9, 15, 19, 20fisumcom2 10893 1 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑘))𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  (class class class)co 5666  cc 7409  0cc0 7411  cmin 7714  cz 8811  ...cfz 9485  Σcsu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-disj 3829  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  fisum0diag2  10902
  Copyright terms: Public domain W3C validator