ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmininf Unicode version

Theorem ltmininf 11256
Description: Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
Assertion
Ref Expression
ltmininf  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )

Proof of Theorem ltmininf
StepHypRef Expression
1 simp2 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
21renegcld 8350 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u B  e.  RR )
3 simp3 1000 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
43renegcld 8350 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
5 simp1 998 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
65renegcld 8350 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u A  e.  RR )
7 maxltsup 11240 . . 3  |-  ( (
-u B  e.  RR  /\  -u C  e.  RR  /\  -u A  e.  RR )  ->  ( sup ( { -u B ,  -u C } ,  RR ,  <  )  <  -u A  <->  (
-u B  <  -u A  /\  -u C  <  -u A
) ) )
82, 4, 6, 7syl3anc 1248 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { -u B ,  -u C } ,  RR ,  <  )  <  -u A  <->  ( -u B  <  -u A  /\  -u C  <  -u A ) ) )
9 minmax 11251 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  =  -u sup ( { -u B ,  -u C } ,  RR ,  <  ) )
109breq2d 4027 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  A  <  -u sup ( {
-u B ,  -u C } ,  RR ,  <  ) ) )
11103adant1 1016 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  A  <  -u
sup ( { -u B ,  -u C } ,  RR ,  <  )
) )
12 maxcl 11232 . . . . 5  |-  ( (
-u B  e.  RR  /\  -u C  e.  RR )  ->  sup ( { -u B ,  -u C } ,  RR ,  <  )  e.  RR )
132, 4, 12syl2anc 411 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { -u B ,  -u C } ,  RR ,  <  )  e.  RR )
14 ltnegcon2 8434 . . . 4  |-  ( ( A  e.  RR  /\  sup ( { -u B ,  -u C } ,  RR ,  <  )  e.  RR )  ->  ( A  <  -u sup ( {
-u B ,  -u C } ,  RR ,  <  )  <->  sup ( { -u B ,  -u C } ,  RR ,  <  )  <  -u A ) )
155, 13, 14syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  -u sup ( {
-u B ,  -u C } ,  RR ,  <  )  <->  sup ( { -u B ,  -u C } ,  RR ,  <  )  <  -u A ) )
1611, 15bitrd 188 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  sup ( { -u B ,  -u C } ,  RR ,  <  )  <  -u A
) )
175, 1ltnegd 8493 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A ) )
185, 3ltnegd 8493 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  -u C  <  -u A ) )
1917, 18anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  A  <  C )  <-> 
( -u B  <  -u A  /\  -u C  <  -u A
) ) )
208, 16, 193bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <  B  /\  A  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    e. wcel 2158   {cpr 3605   class class class wbr 4015   supcsup 6994  infcinf 6995   RRcr 7823    < clt 8005   -ucneg 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-rp 9667  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021
This theorem is referenced by:  rpmincl  11259  mul0inf  11262  reccn2ap  11334  addcncntoplem  14291  mulcncflem  14330  suplociccreex  14342  dveflem  14427
  Copyright terms: Public domain W3C validator