ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp GIF version

Theorem qusgrp 13764
Description: If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusgrp (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem qusgrp
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 9 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 eqidd 2230 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
4 eqidd 2230 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 nsgsubg 13737 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2229 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2229 . . . . 5 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
86, 7eqger 13756 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
95, 8syl 14 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
10 subgrcl 13711 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
115, 10syl 14 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2229 . . . 4 (+g𝐺) = (+g𝐺)
136, 7, 12eqgcpbl 13760 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g𝐺)𝑑)))
146, 12grpcl 13536 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
1511, 14syl3an1 1304 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
169adantr 276 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
1711adantr 276 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
18 simpr1 1027 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
19 simpr2 1028 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
2017, 18, 19, 14syl3anc 1271 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
21 simpr3 1029 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺))
226, 12grpcl 13536 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2317, 20, 21, 22syl3anc 1271 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2416, 23erref 6698 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤))
256, 12grpass 13537 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2611, 25sylan 283 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2724, 26breqtrd 4108 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
28 eqid 2229 . . . . 5 (0g𝐺) = (0g𝐺)
296, 28grpidcl 13557 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
3011, 29syl 14 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐺) ∈ (Base‘𝐺))
316, 12, 28grplid 13559 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
3211, 31sylan 283 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
339adantr 276 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
34 simpr 110 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺))
3533, 34erref 6698 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢)
3632, 35eqbrtrd 4104 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢)
37 eqid 2229 . . . . 5 (invg𝐺) = (invg𝐺)
386, 37grpinvcl 13576 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
3911, 38sylan 283 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
406, 12, 28, 37grplinv 13578 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4111, 40sylan 283 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4230adantr 276 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
4333, 42erref 6698 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺)(𝐺 ~QG 𝑆)(0g𝐺))
4441, 43eqbrtrd 4104 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)(0g𝐺))
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13645 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧ [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻)))
4645simpld 112 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000   Er wer 6675  [cec 6676  Basecbs 13027  +gcplusg 13105  0gc0g 13284   /s cqus 13328  Grpcgrp 13528  invgcminusg 13529  SubGrpcsubg 13699  NrmSGrpcnsg 13700   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-nsg 13703  df-eqg 13704
This theorem is referenced by:  qus0  13767  qusinv  13768  qusghm  13814
  Copyright terms: Public domain W3C validator