ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm GIF version

Theorem resmhm 13059
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resmhm ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))

Proof of Theorem resmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13036 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
2 resmhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32submmnd 13052 . . 3 (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd)
41, 3anim12ci 339 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd))
5 eqid 2193 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2193 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
75, 6mhmf 13037 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
85submss 13048 . . . . 5 (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
9 fssres 5429 . . . . 5 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
107, 8, 9syl2an 289 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
112a1i 9 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑈 = (𝑆s 𝑋))
12 eqidd 2194 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (Base‘𝑆) = (Base‘𝑆))
13 submrcl 13043 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑆) → 𝑆 ∈ Mnd)
1413adantl 277 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑆 ∈ Mnd)
158adantl 277 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
1611, 12, 14, 15ressbas2d 12686 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈))
1716feq2d 5391 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1810, 17mpbid 147 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
19 simpll 527 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
208ad2antlr 489 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑆))
21 simprl 529 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
2220, 21sseldd 3180 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (Base‘𝑆))
23 simprr 531 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
2420, 23sseldd 3180 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (Base‘𝑆))
25 eqid 2193 . . . . . . . 8 (+g𝑆) = (+g𝑆)
26 eqid 2193 . . . . . . . 8 (+g𝑇) = (+g𝑇)
275, 25, 26mhmlin 13039 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2819, 22, 24, 27syl3anc 1249 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2925submcl 13051 . . . . . . . . 9 ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
30293expb 1206 . . . . . . . 8 ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
3130adantll 476 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
3231fvresd 5579 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
33 fvres 5578 . . . . . . . 8 (𝑥𝑋 → ((𝐹𝑋)‘𝑥) = (𝐹𝑥))
34 fvres 5578 . . . . . . . 8 (𝑦𝑋 → ((𝐹𝑋)‘𝑦) = (𝐹𝑦))
3533, 34oveqan12d 5937 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3635adantl 277 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3728, 32, 363eqtr4d 2236 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
3837ralrimivva 2576 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
392a1i 9 . . . . . . . . . 10 (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 = (𝑆s 𝑋))
40 eqidd 2194 . . . . . . . . . 10 (𝑋 ∈ (SubMnd‘𝑆) → (+g𝑆) = (+g𝑆))
41 id 19 . . . . . . . . . 10 (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ∈ (SubMnd‘𝑆))
4239, 40, 41, 13ressplusgd 12746 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑆) → (+g𝑆) = (+g𝑈))
4342adantl 277 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g𝑆) = (+g𝑈))
4443oveqd 5935 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑈)𝑦))
4544fveqeq2d 5562 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4616, 45raleqbidv 2706 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4716, 46raleqbidv 2706 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4838, 47mpbid 147 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
49 eqid 2193 . . . . . . 7 (0g𝑆) = (0g𝑆)
5049subm0cl 13050 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) ∈ 𝑋)
5150adantl 277 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) ∈ 𝑋)
5251fvresd 5579 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = (𝐹‘(0g𝑆)))
532, 49subm0 13054 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) = (0g𝑈))
5453adantl 277 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) = (0g𝑈))
5554fveq2d 5558 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = ((𝐹𝑋)‘(0g𝑈)))
56 eqid 2193 . . . . . 6 (0g𝑇) = (0g𝑇)
5749, 56mhm0 13040 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5857adantr 276 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5952, 55, 583eqtr3d 2234 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))
6018, 48, 593jca 1179 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇)))
61 eqid 2193 . . 3 (Base‘𝑈) = (Base‘𝑈)
62 eqid 2193 . . 3 (+g𝑈) = (+g𝑈)
63 eqid 2193 . . 3 (0g𝑈) = (0g𝑈)
6461, 6, 62, 26, 63, 56ismhm 13033 . 2 ((𝐹𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))))
654, 60, 64sylanbrc 417 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3153  cres 4661  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997   MndHom cmhm 13029  SubMndcsubmnd 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-submnd 13032
This theorem is referenced by:  resrhm  13744
  Copyright terms: Public domain W3C validator