Step | Hyp | Ref
| Expression |
1 | | mhmrcl2 12909 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
2 | | resmhm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
3 | 2 | submmnd 12925 |
. . 3
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd) |
4 | 1, 3 | anim12ci 339 |
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
5 | | eqid 2189 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
6 | | eqid 2189 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
7 | 5, 6 | mhmf 12910 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
8 | 5 | submss 12921 |
. . . . 5
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
9 | | fssres 5407 |
. . . . 5
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
10 | 7, 8, 9 | syl2an 289 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
11 | 2 | a1i 9 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑈 = (𝑆 ↾s 𝑋)) |
12 | | eqidd 2190 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (Base‘𝑆) = (Base‘𝑆)) |
13 | | submrcl 12916 |
. . . . . . 7
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑆 ∈ Mnd) |
14 | 13 | adantl 277 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑆 ∈ Mnd) |
15 | 8 | adantl 277 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
16 | 11, 12, 14, 15 | ressbas2d 12573 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈)) |
17 | 16 | feq2d 5369 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
18 | 10, 17 | mpbid 147 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
19 | | simpll 527 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
20 | 8 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑆)) |
21 | | simprl 529 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
22 | 20, 21 | sseldd 3171 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑆)) |
23 | | simprr 531 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
24 | 20, 23 | sseldd 3171 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (Base‘𝑆)) |
25 | | eqid 2189 |
. . . . . . . 8
⊢
(+g‘𝑆) = (+g‘𝑆) |
26 | | eqid 2189 |
. . . . . . . 8
⊢
(+g‘𝑇) = (+g‘𝑇) |
27 | 5, 25, 26 | mhmlin 12912 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
28 | 19, 22, 24, 27 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
29 | 25 | submcl 12924 |
. . . . . . . . 9
⊢ ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
30 | 29 | 3expb 1206 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
31 | 30 | adantll 476 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
32 | 31 | fvresd 5556 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) |
33 | | fvres 5555 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑥) = (𝐹‘𝑥)) |
34 | | fvres 5555 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑦) = (𝐹‘𝑦)) |
35 | 33, 34 | oveqan12d 5911 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
36 | 35 | adantl 277 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
37 | 28, 32, 36 | 3eqtr4d 2232 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
38 | 37 | ralrimivva 2572 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
39 | 2 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 = (𝑆 ↾s 𝑋)) |
40 | | eqidd 2190 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(+g‘𝑆) =
(+g‘𝑆)) |
41 | | id 19 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ∈ (SubMnd‘𝑆)) |
42 | 39, 40, 41, 13 | ressplusgd 12633 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
43 | 42 | adantl 277 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g‘𝑆) = (+g‘𝑈)) |
44 | 43 | oveqd 5909 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑈)𝑦)) |
45 | 44 | fveqeq2d 5539 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
46 | 16, 45 | raleqbidv 2698 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
47 | 16, 46 | raleqbidv 2698 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
48 | 38, 47 | mpbid 147 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
49 | | eqid 2189 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
50 | 49 | subm0cl 12923 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(0g‘𝑆)
∈ 𝑋) |
51 | 50 | adantl 277 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g‘𝑆) ∈ 𝑋) |
52 | 51 | fvresd 5556 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑆)) = (𝐹‘(0g‘𝑆))) |
53 | 2, 49 | subm0 12927 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(0g‘𝑆) =
(0g‘𝑈)) |
54 | 53 | adantl 277 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g‘𝑆) = (0g‘𝑈)) |
55 | 54 | fveq2d 5535 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑆)) = ((𝐹 ↾ 𝑋)‘(0g‘𝑈))) |
56 | | eqid 2189 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
57 | 49, 56 | mhm0 12913 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
58 | 57 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
59 | 52, 55, 58 | 3eqtr3d 2230 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇)) |
60 | 18, 48, 59 | 3jca 1179 |
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ∧ ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇))) |
61 | | eqid 2189 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
62 | | eqid 2189 |
. . 3
⊢
(+g‘𝑈) = (+g‘𝑈) |
63 | | eqid 2189 |
. . 3
⊢
(0g‘𝑈) = (0g‘𝑈) |
64 | 61, 6, 62, 26, 63, 56 | ismhm 12906 |
. 2
⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ∧ ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇)))) |
65 | 4, 60, 64 | sylanbrc 417 |
1
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇)) |