ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv GIF version

Theorem rhmunitinv 13674
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13651 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2193 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 eqid 2193 . . . . . . 7 (invr𝑅) = (invr𝑅)
4 eqid 2193 . . . . . . 7 (.r𝑅) = (.r𝑅)
5 eqid 2193 . . . . . . 7 (1r𝑅) = (1r𝑅)
62, 3, 4, 5unitlinv 13622 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
71, 6sylan 283 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
87fveq2d 5558 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = (𝐹‘(1r𝑅)))
9 simpl 109 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10 eqidd 2194 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
11 eqidd 2194 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅))
121adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
13 ringsrg 13543 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1412, 13syl 14 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing)
1510, 11, 14unitssd 13605 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) ⊆ (Base‘𝑅))
162, 3unitinvcl 13619 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
171, 16sylan 283 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
1815, 17sseldd 3180 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Base‘𝑅))
19 simpr 110 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
2015, 19sseldd 3180 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
21 eqid 2193 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2193 . . . . . 6 (.r𝑆) = (.r𝑆)
2321, 4, 22rhmmul 13660 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
249, 18, 20, 23syl3anc 1249 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
25 eqid 2193 . . . . . 6 (1r𝑆) = (1r𝑆)
265, 25rhm1 13663 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2726adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
288, 24, 273eqtr3d 2234 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
29 rhmrcl2 13652 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3029adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
31 elrhmunit 13673 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
32 eqid 2193 . . . . 5 (Unit‘𝑆) = (Unit‘𝑆)
33 eqid 2193 . . . . 5 (invr𝑆) = (invr𝑆)
3432, 33, 22, 25unitlinv 13622 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3530, 31, 34syl2anc 411 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3628, 35eqtr4d 2229 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)))
37 eqidd 2194 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
38 eqid 2193 . . . . . . . 8 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3938, 22mgpplusgg 13420 . . . . . . 7 (𝑆 ∈ Ring → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
4030, 39syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
41 basfn 12676 . . . . . . . 8 Base Fn V
4230elexd 2773 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ V)
43 funfvex 5571 . . . . . . . . 9 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
4443funfni 5354 . . . . . . . 8 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
4541, 42, 44sylancr 414 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) ∈ V)
46 eqidd 2194 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) = (Base‘𝑆))
47 eqidd 2194 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆))
48 ringsrg 13543 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
4930, 48syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing)
5046, 47, 49unitssd 13605 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ⊆ (Base‘𝑆))
5145, 50ssexd 4169 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ∈ V)
5238mgpex 13421 . . . . . . 7 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ V)
5330, 52syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (mulGrp‘𝑆) ∈ V)
5437, 40, 51, 53ressplusgd 12746 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
5554oveqd 5935 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5654oveqd 5935 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5755, 56eqeq12d 2208 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴))))
58 eqid 2193 . . . . . . 7 ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆))
5932, 58unitgrp 13612 . . . . . 6 (𝑆 ∈ Ring → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6029, 59syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6160adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
62 elrhmunit 13673 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6317, 62syldan 282 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6447, 37, 49unitgrpbasd 13611 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6563, 64eleqtrd 2272 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6632, 33unitinvcl 13619 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6730, 31, 66syl2anc 411 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6867, 64eleqtrd 2272 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6931, 64eleqtrd 2272 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
70 eqid 2193 . . . . 5 (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
71 eqid 2193 . . . . 5 (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
7270, 71grprcan 13109 . . . 4 ((((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7361, 65, 68, 69, 72syl13anc 1251 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7457, 73bitrd 188 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7536, 74mpbid 147 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  .rcmulr 12696  Grpcgrp 13072  mulGrpcmgp 13416  1rcur 13455  SRingcsrg 13459  Ringcrg 13492  Unitcui 13583  invrcinvr 13616   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-rhm 13648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator