Proof of Theorem rhmunitinv
| Step | Hyp | Ref
| Expression |
| 1 | | rhmrcl1 13711 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
| 2 | | eqid 2196 |
. . . . . . 7
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 3 | | eqid 2196 |
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 4 | | eqid 2196 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | eqid 2196 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 6 | 2, 3, 4, 5 | unitlinv 13682 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) →
(((invr‘𝑅)‘𝐴)(.r‘𝑅)𝐴) = (1r‘𝑅)) |
| 7 | 1, 6 | sylan 283 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr‘𝑅)‘𝐴)(.r‘𝑅)𝐴) = (1r‘𝑅)) |
| 8 | 7 | fveq2d 5562 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr‘𝑅)‘𝐴)(.r‘𝑅)𝐴)) = (𝐹‘(1r‘𝑅))) |
| 9 | | simpl 109 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| 10 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) |
| 11 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅)) |
| 12 | 1 | adantr 276 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
| 13 | | ringsrg 13603 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing) |
| 15 | 10, 11, 14 | unitssd 13665 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) ⊆ (Base‘𝑅)) |
| 16 | 2, 3 | unitinvcl 13679 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) →
((invr‘𝑅)‘𝐴) ∈ (Unit‘𝑅)) |
| 17 | 1, 16 | sylan 283 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝐴) ∈ (Unit‘𝑅)) |
| 18 | 15, 17 | sseldd 3184 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝐴) ∈ (Base‘𝑅)) |
| 19 | | simpr 110 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅)) |
| 20 | 15, 19 | sseldd 3184 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅)) |
| 21 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 22 | | eqid 2196 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 23 | 21, 4, 22 | rhmmul 13720 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr‘𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr‘𝑅)‘𝐴)(.r‘𝑅)𝐴)) = ((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴))) |
| 24 | 9, 18, 20, 23 | syl3anc 1249 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr‘𝑅)‘𝐴)(.r‘𝑅)𝐴)) = ((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴))) |
| 25 | | eqid 2196 |
. . . . . 6
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 26 | 5, 25 | rhm1 13723 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 27 | 26 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 28 | 8, 24, 27 | 3eqtr3d 2237 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (1r‘𝑆)) |
| 29 | | rhmrcl2 13712 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
| 30 | 29 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring) |
| 31 | | elrhmunit 13733 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) |
| 32 | | eqid 2196 |
. . . . 5
⊢
(Unit‘𝑆) =
(Unit‘𝑆) |
| 33 | | eqid 2196 |
. . . . 5
⊢
(invr‘𝑆) = (invr‘𝑆) |
| 34 | 32, 33, 22, 25 | unitlinv 13682 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘𝐴) ∈ (Unit‘𝑆)) → (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (1r‘𝑆)) |
| 35 | 30, 31, 34 | syl2anc 411 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (1r‘𝑆)) |
| 36 | 28, 35 | eqtr4d 2232 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴))) |
| 37 | | eqidd 2197 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s
(Unit‘𝑆))) |
| 38 | | eqid 2196 |
. . . . . . . 8
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
| 39 | 38, 22 | mgpplusgg 13480 |
. . . . . . 7
⊢ (𝑆 ∈ Ring →
(.r‘𝑆) =
(+g‘(mulGrp‘𝑆))) |
| 40 | 30, 39 | syl 14 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r‘𝑆) =
(+g‘(mulGrp‘𝑆))) |
| 41 | | basfn 12736 |
. . . . . . . 8
⊢ Base Fn
V |
| 42 | 30 | elexd 2776 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ V) |
| 43 | | funfvex 5575 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
| 44 | 43 | funfni 5358 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
| 45 | 41, 42, 44 | sylancr 414 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) ∈ V) |
| 46 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) = (Base‘𝑆)) |
| 47 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆)) |
| 48 | | ringsrg 13603 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
| 49 | 30, 48 | syl 14 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing) |
| 50 | 46, 47, 49 | unitssd 13665 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ⊆ (Base‘𝑆)) |
| 51 | 45, 50 | ssexd 4173 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ∈ V) |
| 52 | 38 | mgpex 13481 |
. . . . . . 7
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
V) |
| 53 | 30, 52 | syl 14 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (mulGrp‘𝑆) ∈ V) |
| 54 | 37, 40, 51, 53 | ressplusgd 12806 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r‘𝑆) =
(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))) |
| 55 | 54 | oveqd 5939 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = ((𝐹‘((invr‘𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴))) |
| 56 | 54 | oveqd 5939 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴))) |
| 57 | 55, 56 | eqeq12d 2211 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) ↔ ((𝐹‘((invr‘𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)))) |
| 58 | | eqid 2196 |
. . . . . . 7
⊢
((mulGrp‘𝑆)
↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) |
| 59 | 32, 58 | unitgrp 13672 |
. . . . . 6
⊢ (𝑆 ∈ Ring →
((mulGrp‘𝑆)
↾s (Unit‘𝑆)) ∈ Grp) |
| 60 | 29, 59 | syl 14 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp) |
| 61 | 60 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp) |
| 62 | | elrhmunit 13733 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr‘𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) ∈ (Unit‘𝑆)) |
| 63 | 17, 62 | syldan 282 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) ∈ (Unit‘𝑆)) |
| 64 | 47, 37, 49 | unitgrpbasd 13671 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))) |
| 65 | 63, 64 | eleqtrd 2275 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))) |
| 66 | 32, 33 | unitinvcl 13679 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘𝐴) ∈ (Unit‘𝑆)) → ((invr‘𝑆)‘(𝐹‘𝐴)) ∈ (Unit‘𝑆)) |
| 67 | 30, 31, 66 | syl2anc 411 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr‘𝑆)‘(𝐹‘𝐴)) ∈ (Unit‘𝑆)) |
| 68 | 67, 64 | eleqtrd 2275 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr‘𝑆)‘(𝐹‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))) |
| 69 | 31, 64 | eleqtrd 2275 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))) |
| 70 | | eqid 2196 |
. . . . 5
⊢
(Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) =
(Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) |
| 71 | | eqid 2196 |
. . . . 5
⊢
(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) =
(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) |
| 72 | 70, 71 | grprcan 13169 |
. . . 4
⊢
((((mulGrp‘𝑆)
↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr‘𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆))) ∧
((invr‘𝑆)‘(𝐹‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆))) ∧
(𝐹‘𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆))))) →
(((𝐹‘((invr‘𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)) ↔ (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴)))) |
| 73 | 61, 65, 68, 69, 72 | syl13anc 1251 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr‘𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(+g‘((mulGrp‘𝑆) ↾s
(Unit‘𝑆)))(𝐹‘𝐴)) ↔ (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴)))) |
| 74 | 57, 73 | bitrd 188 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr‘𝑅)‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) = (((invr‘𝑆)‘(𝐹‘𝐴))(.r‘𝑆)(𝐹‘𝐴)) ↔ (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴)))) |
| 75 | 36, 74 | mpbid 147 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) |