ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv GIF version

Theorem rhmunitinv 13734
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13711 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2196 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 eqid 2196 . . . . . . 7 (invr𝑅) = (invr𝑅)
4 eqid 2196 . . . . . . 7 (.r𝑅) = (.r𝑅)
5 eqid 2196 . . . . . . 7 (1r𝑅) = (1r𝑅)
62, 3, 4, 5unitlinv 13682 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
71, 6sylan 283 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
87fveq2d 5562 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = (𝐹‘(1r𝑅)))
9 simpl 109 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10 eqidd 2197 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
11 eqidd 2197 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅))
121adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
13 ringsrg 13603 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1412, 13syl 14 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing)
1510, 11, 14unitssd 13665 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) ⊆ (Base‘𝑅))
162, 3unitinvcl 13679 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
171, 16sylan 283 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
1815, 17sseldd 3184 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Base‘𝑅))
19 simpr 110 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
2015, 19sseldd 3184 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
21 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2196 . . . . . 6 (.r𝑆) = (.r𝑆)
2321, 4, 22rhmmul 13720 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
249, 18, 20, 23syl3anc 1249 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
25 eqid 2196 . . . . . 6 (1r𝑆) = (1r𝑆)
265, 25rhm1 13723 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2726adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
288, 24, 273eqtr3d 2237 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
29 rhmrcl2 13712 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3029adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
31 elrhmunit 13733 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
32 eqid 2196 . . . . 5 (Unit‘𝑆) = (Unit‘𝑆)
33 eqid 2196 . . . . 5 (invr𝑆) = (invr𝑆)
3432, 33, 22, 25unitlinv 13682 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3530, 31, 34syl2anc 411 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3628, 35eqtr4d 2232 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)))
37 eqidd 2197 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
38 eqid 2196 . . . . . . . 8 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3938, 22mgpplusgg 13480 . . . . . . 7 (𝑆 ∈ Ring → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
4030, 39syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
41 basfn 12736 . . . . . . . 8 Base Fn V
4230elexd 2776 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ V)
43 funfvex 5575 . . . . . . . . 9 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
4443funfni 5358 . . . . . . . 8 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
4541, 42, 44sylancr 414 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) ∈ V)
46 eqidd 2197 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) = (Base‘𝑆))
47 eqidd 2197 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆))
48 ringsrg 13603 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
4930, 48syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing)
5046, 47, 49unitssd 13665 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ⊆ (Base‘𝑆))
5145, 50ssexd 4173 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ∈ V)
5238mgpex 13481 . . . . . . 7 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ V)
5330, 52syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (mulGrp‘𝑆) ∈ V)
5437, 40, 51, 53ressplusgd 12806 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
5554oveqd 5939 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5654oveqd 5939 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5755, 56eqeq12d 2211 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴))))
58 eqid 2196 . . . . . . 7 ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆))
5932, 58unitgrp 13672 . . . . . 6 (𝑆 ∈ Ring → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6029, 59syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6160adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
62 elrhmunit 13733 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6317, 62syldan 282 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6447, 37, 49unitgrpbasd 13671 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6563, 64eleqtrd 2275 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6632, 33unitinvcl 13679 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6730, 31, 66syl2anc 411 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6867, 64eleqtrd 2275 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6931, 64eleqtrd 2275 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
70 eqid 2196 . . . . 5 (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
71 eqid 2196 . . . . 5 (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
7270, 71grprcan 13169 . . . 4 ((((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7361, 65, 68, 69, 72syl13anc 1251 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7457, 73bitrd 188 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7536, 74mpbid 147 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  Grpcgrp 13132  mulGrpcmgp 13476  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  Unitcui 13643  invrcinvr 13676   RingHom crh 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-grp 13135  df-minusg 13136  df-ghm 13371  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677  df-rhm 13708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator