ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv GIF version

Theorem rhmunitinv 14025
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 14002 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2206 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 eqid 2206 . . . . . . 7 (invr𝑅) = (invr𝑅)
4 eqid 2206 . . . . . . 7 (.r𝑅) = (.r𝑅)
5 eqid 2206 . . . . . . 7 (1r𝑅) = (1r𝑅)
62, 3, 4, 5unitlinv 13973 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
71, 6sylan 283 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
87fveq2d 5598 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = (𝐹‘(1r𝑅)))
9 simpl 109 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
11 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅))
121adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
13 ringsrg 13894 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1412, 13syl 14 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing)
1510, 11, 14unitssd 13956 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) ⊆ (Base‘𝑅))
162, 3unitinvcl 13970 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
171, 16sylan 283 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
1815, 17sseldd 3198 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Base‘𝑅))
19 simpr 110 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
2015, 19sseldd 3198 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
21 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2206 . . . . . 6 (.r𝑆) = (.r𝑆)
2321, 4, 22rhmmul 14011 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
249, 18, 20, 23syl3anc 1250 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
25 eqid 2206 . . . . . 6 (1r𝑆) = (1r𝑆)
265, 25rhm1 14014 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2726adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
288, 24, 273eqtr3d 2247 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
29 rhmrcl2 14003 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3029adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
31 elrhmunit 14024 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
32 eqid 2206 . . . . 5 (Unit‘𝑆) = (Unit‘𝑆)
33 eqid 2206 . . . . 5 (invr𝑆) = (invr𝑆)
3432, 33, 22, 25unitlinv 13973 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3530, 31, 34syl2anc 411 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3628, 35eqtr4d 2242 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)))
37 eqidd 2207 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
38 eqid 2206 . . . . . . . 8 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3938, 22mgpplusgg 13771 . . . . . . 7 (𝑆 ∈ Ring → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
4030, 39syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
41 basfn 12975 . . . . . . . 8 Base Fn V
4230elexd 2787 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ V)
43 funfvex 5611 . . . . . . . . 9 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
4443funfni 5390 . . . . . . . 8 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
4541, 42, 44sylancr 414 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) ∈ V)
46 eqidd 2207 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) = (Base‘𝑆))
47 eqidd 2207 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆))
48 ringsrg 13894 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
4930, 48syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing)
5046, 47, 49unitssd 13956 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ⊆ (Base‘𝑆))
5145, 50ssexd 4195 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ∈ V)
5238mgpex 13772 . . . . . . 7 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ V)
5330, 52syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (mulGrp‘𝑆) ∈ V)
5437, 40, 51, 53ressplusgd 13046 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
5554oveqd 5979 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5654oveqd 5979 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5755, 56eqeq12d 2221 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴))))
58 eqid 2206 . . . . . . 7 ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆))
5932, 58unitgrp 13963 . . . . . 6 (𝑆 ∈ Ring → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6029, 59syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6160adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
62 elrhmunit 14024 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6317, 62syldan 282 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6447, 37, 49unitgrpbasd 13962 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6563, 64eleqtrd 2285 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6632, 33unitinvcl 13970 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6730, 31, 66syl2anc 411 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6867, 64eleqtrd 2285 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6931, 64eleqtrd 2285 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
70 eqid 2206 . . . . 5 (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
71 eqid 2206 . . . . 5 (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
7270, 71grprcan 13454 . . . 4 ((((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7361, 65, 68, 69, 72syl13anc 1252 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7457, 73bitrd 188 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7536, 74mpbid 147 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5280  cfv 5285  (class class class)co 5962  Basecbs 12917  s cress 12918  +gcplusg 12994  .rcmulr 12995  Grpcgrp 13417  mulGrpcmgp 13767  1rcur 13806  SRingcsrg 13810  Ringcrg 13843  Unitcui 13934  invrcinvr 13967   RingHom crh 13997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-tpos 6349  df-map 6755  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-mhm 13376  df-grp 13420  df-minusg 13421  df-ghm 13662  df-cmn 13707  df-abl 13708  df-mgp 13768  df-ur 13807  df-srg 13811  df-ring 13845  df-oppr 13915  df-dvdsr 13936  df-unit 13937  df-invr 13968  df-rhm 13999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator