ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv GIF version

Theorem rhmunitinv 13882
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13859 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
2 eqid 2204 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 eqid 2204 . . . . . . 7 (invr𝑅) = (invr𝑅)
4 eqid 2204 . . . . . . 7 (.r𝑅) = (.r𝑅)
5 eqid 2204 . . . . . . 7 (1r𝑅) = (1r𝑅)
62, 3, 4, 5unitlinv 13830 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
71, 6sylan 283 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝐴)(.r𝑅)𝐴) = (1r𝑅))
87fveq2d 5579 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = (𝐹‘(1r𝑅)))
9 simpl 109 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
10 eqidd 2205 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
11 eqidd 2205 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅))
121adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
13 ringsrg 13751 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1412, 13syl 14 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing)
1510, 11, 14unitssd 13813 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) ⊆ (Base‘𝑅))
162, 3unitinvcl 13827 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
171, 16sylan 283 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅))
1815, 17sseldd 3193 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝐴) ∈ (Base‘𝑅))
19 simpr 110 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
2015, 19sseldd 3193 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
21 eqid 2204 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2204 . . . . . 6 (.r𝑆) = (.r𝑆)
2321, 4, 22rhmmul 13868 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
249, 18, 20, 23syl3anc 1249 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(((invr𝑅)‘𝐴)(.r𝑅)𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)))
25 eqid 2204 . . . . . 6 (1r𝑆) = (1r𝑆)
265, 25rhm1 13871 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2726adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘(1r𝑅)) = (1r𝑆))
288, 24, 273eqtr3d 2245 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
29 rhmrcl2 13860 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3029adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
31 elrhmunit 13881 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
32 eqid 2204 . . . . 5 (Unit‘𝑆) = (Unit‘𝑆)
33 eqid 2204 . . . . 5 (invr𝑆) = (invr𝑆)
3432, 33, 22, 25unitlinv 13830 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3530, 31, 34syl2anc 411 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (1r𝑆))
3628, 35eqtr4d 2240 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)))
37 eqidd 2205 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
38 eqid 2204 . . . . . . . 8 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3938, 22mgpplusgg 13628 . . . . . . 7 (𝑆 ∈ Ring → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
4030, 39syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘(mulGrp‘𝑆)))
41 basfn 12832 . . . . . . . 8 Base Fn V
4230elexd 2784 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ V)
43 funfvex 5592 . . . . . . . . 9 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
4443funfni 5375 . . . . . . . 8 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
4541, 42, 44sylancr 414 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) ∈ V)
46 eqidd 2205 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑆) = (Base‘𝑆))
47 eqidd 2205 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆))
48 ringsrg 13751 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
4930, 48syl 14 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing)
5046, 47, 49unitssd 13813 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ⊆ (Base‘𝑆))
5145, 50ssexd 4183 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) ∈ V)
5238mgpex 13629 . . . . . . 7 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ V)
5330, 52syl 14 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (mulGrp‘𝑆) ∈ V)
5437, 40, 51, 53ressplusgd 12903 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (.r𝑆) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
5554oveqd 5960 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5654oveqd 5960 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)))
5755, 56eqeq12d 2219 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ ((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴))))
58 eqid 2204 . . . . . . 7 ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) = ((mulGrp‘𝑆) ↾s (Unit‘𝑆))
5932, 58unitgrp 13820 . . . . . 6 (𝑆 ∈ Ring → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6029, 59syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
6160adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp)
62 elrhmunit 13881 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝐴) ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6317, 62syldan 282 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Unit‘𝑆))
6447, 37, 49unitgrpbasd 13819 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6563, 64eleqtrd 2283 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6632, 33unitinvcl 13827 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹𝐴) ∈ (Unit‘𝑆)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6730, 31, 66syl2anc 411 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Unit‘𝑆))
6867, 64eleqtrd 2283 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
6931, 64eleqtrd 2283 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))
70 eqid 2204 . . . . 5 (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
71 eqid 2204 . . . . 5 (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) = (+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))
7270, 71grprcan 13311 . . . 4 ((((mulGrp‘𝑆) ↾s (Unit‘𝑆)) ∈ Grp ∧ ((𝐹‘((invr𝑅)‘𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ ((invr𝑆)‘(𝐹𝐴)) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))) ∧ (𝐹𝐴) ∈ (Base‘((mulGrp‘𝑆) ↾s (Unit‘𝑆))))) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7361, 65, 68, 69, 72syl13anc 1251 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(+g‘((mulGrp‘𝑆) ↾s (Unit‘𝑆)))(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7457, 73bitrd 188 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝐹‘((invr𝑅)‘𝐴))(.r𝑆)(𝐹𝐴)) = (((invr𝑆)‘(𝐹𝐴))(.r𝑆)(𝐹𝐴)) ↔ (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴))))
7536, 74mpbid 147 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771   Fn wfn 5265  cfv 5270  (class class class)co 5943  Basecbs 12774  s cress 12775  +gcplusg 12851  .rcmulr 12852  Grpcgrp 13274  mulGrpcmgp 13624  1rcur 13663  SRingcsrg 13667  Ringcrg 13700  Unitcui 13791  invrcinvr 13824   RingHom crh 13854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-map 6736  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mhm 13233  df-grp 13277  df-minusg 13278  df-ghm 13519  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794  df-invr 13825  df-rhm 13856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator