| Step | Hyp | Ref
| Expression |
| 1 | | seqf1o.4 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzfz2 10109 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 4 | | fveq2 5559 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑀)) |
| 5 | 4 | oveq2d 5939 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀))) |
| 6 | 4 | oveq1d 5938 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))) |
| 7 | 5, 6 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑀 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾)))) |
| 8 | 7 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))))) |
| 9 | | fveq2 5559 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑛)) |
| 10 | 9 | oveq2d 5939 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛))) |
| 11 | 9 | oveq1d 5938 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))) |
| 12 | 10, 11 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)))) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))))) |
| 14 | | fveq2 5559 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘(𝑛 + 1))) |
| 15 | 14 | oveq2d 5939 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1)))) |
| 16 | 14 | oveq1d 5938 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))) |
| 17 | 15, 16 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
| 18 | 17 | imbi2d 230 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
| 19 | | fveq2 5559 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 20 | 19 | oveq2d 5939 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁))) |
| 21 | 19 | oveq1d 5938 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) |
| 22 | 20, 21 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾)))) |
| 23 | 22 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))))) |
| 24 | | seqf1o.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 25 | | seqf1olem2a.1 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝐶) |
| 26 | | seqf1olem2a.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| 27 | 25, 26 | ffvelcdmd 5699 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐾) ∈ 𝐶) |
| 28 | | eluzel2 9608 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 29 | 1, 28 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 30 | | seqf1oglem2a.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| 31 | 25, 30 | fexd 5793 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ V) |
| 32 | | seqf1og.p |
. . . . . . 7
⊢ (𝜑 → + ∈ 𝑉) |
| 33 | | seq1g 10557 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝐺 ∈ V ∧ + ∈ 𝑉) → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 34 | 29, 31, 32, 33 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 35 | | seqf1olem2a.4 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐴) |
| 36 | | eluzfz1 10108 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 37 | 1, 36 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 38 | 35, 37 | sseldd 3185 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝐴) |
| 39 | 25, 38 | ffvelcdmd 5699 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑀) ∈ 𝐶) |
| 40 | 34, 39 | eqeltrd 2273 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) ∈ 𝐶) |
| 41 | 24, 27, 40 | caovcomd 6081 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))) |
| 42 | 41 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾)))) |
| 43 | | oveq1 5930 |
. . . . . 6
⊢ (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1)))) |
| 44 | | elfzouz 10228 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 45 | 44 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 46 | 31 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐺 ∈ V) |
| 47 | 32 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → + ∈ 𝑉) |
| 48 | | seqp1g 10560 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝐺 ∈ V ∧ + ∈ 𝑉) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 49 | 45, 46, 47, 48 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 50 | 49 | oveq2d 5939 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((𝐺‘𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 51 | | seqf1o.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 52 | 51 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 53 | | seqf1o.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| 54 | 53, 27 | sseldd 3185 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐾) ∈ 𝑆) |
| 55 | 54 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘𝐾) ∈ 𝑆) |
| 56 | 53 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐶 ⊆ 𝑆) |
| 57 | 56 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐶 ⊆ 𝑆) |
| 58 | 25 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐺:𝐴⟶𝐶) |
| 59 | 58 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐺:𝐴⟶𝐶) |
| 60 | | elfzouz2 10239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 61 | 60 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 62 | | fzss2 10141 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 63 | 61, 62 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 64 | 35 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑁) ⊆ 𝐴) |
| 65 | 63, 64 | sstrd 3194 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ 𝐴) |
| 66 | 65 | sselda 3184 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ 𝐴) |
| 67 | 59, 66 | ffvelcdmd 5699 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝐶) |
| 68 | 57, 67 | sseldd 3185 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝑆) |
| 69 | | seqf1o.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 70 | 69 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 71 | 45, 68, 70, 46, 47 | seqclg 10566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆) |
| 72 | | fzofzp1 10305 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 73 | 72 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 74 | 64, 73 | sseldd 3185 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ 𝐴) |
| 75 | 58, 74 | ffvelcdmd 5699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝐶) |
| 76 | 56, 75 | sseldd 3185 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
| 77 | 52, 55, 71, 76 | caovassd 6084 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = ((𝐺‘𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 78 | 50, 77 | eqtr4d 2232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1)))) |
| 79 | 52, 71, 76, 55 | caovassd 6084 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
| 80 | 49 | oveq1d 5938 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺‘𝐾))) |
| 81 | 52, 71, 55, 76 | caovassd 6084 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1))))) |
| 82 | 24 | adantlr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 83 | 27 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘𝐾) ∈ 𝐶) |
| 84 | 82, 75, 83 | caovcomd 6081 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)) = ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1)))) |
| 85 | 84 | oveq2d 5939 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1))))) |
| 86 | 81, 85 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
| 87 | 79, 80, 86 | 3eqtr4d 2239 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1)))) |
| 88 | 78, 87 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) ↔ (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))))) |
| 89 | 43, 88 | imbitrrid 156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
| 90 | 89 | expcom 116 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
| 91 | 90 | a2d 26 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
| 92 | 8, 13, 18, 23, 42, 91 | fzind2 10317 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾)))) |
| 93 | 3, 92 | mpcom 36 |
1
⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) |