![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibr | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5ibr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5ibr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomd 140 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5ib 153 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 669 limelon 4281 eldifpw 4358 ssonuni 4364 onsucuni2 4439 peano2 4469 limom 4487 elrnmpt1 4750 cnveqb 4952 cnveq0 4953 relcoi1 5028 ndmfvg 5406 ffvresb 5537 caovord3d 5895 poxp 6083 nnm0r 6329 nnacl 6330 nnacom 6334 nnaass 6335 nndi 6336 nnmass 6337 nnmsucr 6338 nnmcom 6339 brecop 6473 ecopovtrn 6480 ecopovtrng 6483 elpm2r 6514 map0g 6536 fundmen 6654 mapxpen 6695 phpm 6712 f1vrnfibi 6785 elfir 6813 mulcmpblnq 7124 ordpipqqs 7130 mulcmpblnq0 7200 genpprecll 7270 genppreclu 7271 addcmpblnr 7482 ax1rid 7612 axpre-mulgt0 7622 cnegexlem1 7860 msqge0 8296 mulge0 8299 ltleap 8311 nnmulcl 8651 nnsub 8669 elnn0z 8971 ztri3or0 9000 nneoor 9057 uz11 9250 xltnegi 9511 frec2uzuzd 10068 seq3fveq2 10135 seq3shft2 10139 seq3split 10145 seq3caopr3 10147 seq3id2 10175 seq3homo 10176 m1expcl2 10208 expadd 10228 expmul 10231 faclbnd 10380 hashfzp1 10463 hashfacen 10472 seq3coll 10478 caucvgrelemcau 10644 recan 10773 rexanre 10884 fsumiun 11138 efexp 11239 dvdstr 11378 alzdvds 11400 zob 11436 gcdmultiplez 11555 dvdssq 11565 cncongr2 11631 elrestr 11971 restopn2 12195 txcn 12286 txlm 12290 isxms2 12441 bj-om 12827 bj-inf2vnlem2 12861 bj-inf2vn 12864 bj-inf2vn2 12865 |
Copyright terms: Public domain | W3C validator |