Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibr | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 | |
syl5ibr.2 |
Ref | Expression |
---|---|
syl5ibr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 | |
2 | syl5ibr.2 | . . 3 | |
3 | 2 | bicomd 140 | . 2 |
4 | 1, 3 | syl5ib 153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 687 limelon 4377 eldifpw 4455 ssonuni 4465 onsucuni2 4541 peano2 4572 limom 4591 elrnmpt1 4855 cnveqb 5059 cnveq0 5060 relcoi1 5135 ndmfvg 5517 ffvresb 5648 caovord3d 6012 poxp 6200 nnm0r 6447 nnacl 6448 nnacom 6452 nnaass 6453 nndi 6454 nnmass 6455 nnmsucr 6456 nnmcom 6457 brecop 6591 ecopovtrn 6598 ecopovtrng 6601 elpm2r 6632 map0g 6654 fundmen 6772 mapxpen 6814 phpm 6831 f1vrnfibi 6910 elfir 6938 mulcmpblnq 7309 ordpipqqs 7315 mulcmpblnq0 7385 genpprecll 7455 genppreclu 7456 addcmpblnr 7680 ax1rid 7818 axpre-mulgt0 7828 cnegexlem1 8073 msqge0 8514 mulge0 8517 ltleap 8530 nnmulcl 8878 nnsub 8896 elnn0z 9204 ztri3or0 9233 nneoor 9293 uz11 9488 xltnegi 9771 frec2uzuzd 10337 seq3fveq2 10404 seq3shft2 10408 seq3split 10414 seq3caopr3 10416 seq3id2 10444 seq3homo 10445 m1expcl2 10477 expadd 10497 expmul 10500 faclbnd 10654 hashfzp1 10737 hashfacen 10749 seq3coll 10755 caucvgrelemcau 10922 recan 11051 rexanre 11162 fsumiun 11418 efexp 11623 dvdstr 11768 alzdvds 11792 zob 11828 gcdmultiplez 11954 dvdssq 11964 cncongr2 12036 prmdiveq 12168 pythagtriplem2 12198 pcexp 12241 elrestr 12564 restopn2 12823 txcn 12915 txlm 12919 isxms2 13092 bj-om 13819 bj-inf2vnlem2 13853 bj-inf2vn 13856 bj-inf2vn2 13857 |
Copyright terms: Public domain | W3C validator |