Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibr | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 | |
syl5ibr.2 |
Ref | Expression |
---|---|
syl5ibr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 | |
2 | syl5ibr.2 | . . 3 | |
3 | 2 | bicomd 140 | . 2 |
4 | 1, 3 | syl5ib 153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 692 limelon 4384 eldifpw 4462 ssonuni 4472 onsucuni2 4548 peano2 4579 limom 4598 elrnmpt1 4862 cnveqb 5066 cnveq0 5067 relcoi1 5142 ndmfvg 5527 ffvresb 5659 caovord3d 6023 poxp 6211 nnm0r 6458 nnacl 6459 nnacom 6463 nnaass 6464 nndi 6465 nnmass 6466 nnmsucr 6467 nnmcom 6468 brecop 6603 ecopovtrn 6610 ecopovtrng 6613 elpm2r 6644 map0g 6666 fundmen 6784 mapxpen 6826 phpm 6843 f1vrnfibi 6922 elfir 6950 mulcmpblnq 7330 ordpipqqs 7336 mulcmpblnq0 7406 genpprecll 7476 genppreclu 7477 addcmpblnr 7701 ax1rid 7839 axpre-mulgt0 7849 cnegexlem1 8094 msqge0 8535 mulge0 8538 ltleap 8551 nnmulcl 8899 nnsub 8917 elnn0z 9225 ztri3or0 9254 nneoor 9314 uz11 9509 xltnegi 9792 frec2uzuzd 10358 seq3fveq2 10425 seq3shft2 10429 seq3split 10435 seq3caopr3 10437 seq3id2 10465 seq3homo 10466 m1expcl2 10498 expadd 10518 expmul 10521 faclbnd 10675 hashfzp1 10759 hashfacen 10771 seq3coll 10777 caucvgrelemcau 10944 recan 11073 rexanre 11184 fsumiun 11440 efexp 11645 dvdstr 11790 alzdvds 11814 zob 11850 gcdmultiplez 11976 dvdssq 11986 cncongr2 12058 prmdiveq 12190 pythagtriplem2 12220 pcexp 12263 elrestr 12587 restopn2 12977 txcn 13069 txlm 13073 isxms2 13246 bj-om 13972 bj-inf2vnlem2 14006 bj-inf2vn 14009 bj-inf2vn2 14010 |
Copyright terms: Public domain | W3C validator |