![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divmuleqapd | GIF version |
Description: Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
divcld.1 | โข (๐ โ ๐ด โ โ) |
divcld.2 | โข (๐ โ ๐ต โ โ) |
divmuld.3 | โข (๐ โ ๐ถ โ โ) |
divmuldivapd.4 | โข (๐ โ ๐ท โ โ) |
divmuldivapd.5 | โข (๐ โ ๐ต # 0) |
divmuldivapd.6 | โข (๐ โ ๐ท # 0) |
Ref | Expression |
---|---|
divmuleqapd | โข (๐ โ ((๐ด / ๐ต) = (๐ถ / ๐ท) โ (๐ด ยท ๐ท) = (๐ถ ยท ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcld.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | divmuld.3 | . 2 โข (๐ โ ๐ถ โ โ) | |
3 | divcld.2 | . . 3 โข (๐ โ ๐ต โ โ) | |
4 | divmuldivapd.5 | . . 3 โข (๐ โ ๐ต # 0) | |
5 | 3, 4 | jca 306 | . 2 โข (๐ โ (๐ต โ โ โง ๐ต # 0)) |
6 | divmuldivapd.4 | . . 3 โข (๐ โ ๐ท โ โ) | |
7 | divmuldivapd.6 | . . 3 โข (๐ โ ๐ท # 0) | |
8 | 6, 7 | jca 306 | . 2 โข (๐ โ (๐ท โ โ โง ๐ท # 0)) |
9 | divmuleqap 8673 | . 2 โข (((๐ด โ โ โง ๐ถ โ โ) โง ((๐ต โ โ โง ๐ต # 0) โง (๐ท โ โ โง ๐ท # 0))) โ ((๐ด / ๐ต) = (๐ถ / ๐ท) โ (๐ด ยท ๐ท) = (๐ถ ยท ๐ต))) | |
10 | 1, 2, 5, 8, 9 | syl22anc 1239 | 1 โข (๐ โ ((๐ด / ๐ต) = (๐ถ / ๐ท) โ (๐ด ยท ๐ท) = (๐ถ ยท ๐ต))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1353 โ wcel 2148 class class class wbr 4003 (class class class)co 5874 โcc 7808 0cc0 7810 ยท cmul 7815 # cap 8537 / cdiv 8628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 |
This theorem is referenced by: pceulem 12293 |
Copyright terms: Public domain | W3C validator |