| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp1 | GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9109 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 10751 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1zzd 9461 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℤ) | |
| 5 | elnnuz 9747 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ≥‘1)) | |
| 6 | fvconst2g 5846 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴) | |
| 7 | 5, 6 | sylan2br 288 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴) |
| 8 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → 𝐴 ∈ ℂ) | |
| 9 | 7, 8 | eqeltrd 2306 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
| 10 | mulcl 8114 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 11 | 10 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 12 | 4, 9, 11 | seq3-1 10671 | . 2 ⊢ (𝐴 ∈ ℂ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) |
| 13 | fvconst2g 5846 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 14 | 1, 13 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 15 | 3, 12, 14 | 3eqtrd 2266 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 × cxp 4714 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 1c1 7988 · cmul 7992 ℕcn 9098 ℤ≥cuz 9710 seqcseq 10656 ↑cexp 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-exp 10748 |
| This theorem is referenced by: expp1 10755 expn1ap0 10758 expcllem 10759 expap0 10778 expp1zap 10797 expm1ap 10798 sqval 10806 expnbnd 10872 exp1d 10877 geoisum1 12016 ef4p 12191 efgt1p2 12192 efgt1p 12193 modxp1i 12927 numexp1 12932 dvexp 15370 dveflem 15385 plyid 15405 perfectlem2 15659 |
| Copyright terms: Public domain | W3C validator |