| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp1 | GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
| Ref | Expression |
|---|---|
| exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9060 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | expnnval 10700 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
| 4 | 1zzd 9412 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℤ) | |
| 5 | elnnuz 9698 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ≥‘1)) | |
| 6 | fvconst2g 5808 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴) | |
| 7 | 5, 6 | sylan2br 288 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴) |
| 8 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → 𝐴 ∈ ℂ) | |
| 9 | 7, 8 | eqeltrd 2283 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
| 10 | mulcl 8065 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 11 | 10 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
| 12 | 4, 9, 11 | seq3-1 10620 | . 2 ⊢ (𝐴 ∈ ℂ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) |
| 13 | fvconst2g 5808 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
| 14 | 1, 13 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
| 15 | 3, 12, 14 | 3eqtrd 2243 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3635 × cxp 4678 ‘cfv 5277 (class class class)co 5954 ℂcc 7936 1c1 7939 · cmul 7943 ℕcn 9049 ℤ≥cuz 9661 seqcseq 10605 ↑cexp 10696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-n0 9309 df-z 9386 df-uz 9662 df-seqfrec 10606 df-exp 10697 |
| This theorem is referenced by: expp1 10704 expn1ap0 10707 expcllem 10708 expap0 10727 expp1zap 10746 expm1ap 10747 sqval 10755 expnbnd 10821 exp1d 10826 geoisum1 11880 ef4p 12055 efgt1p2 12056 efgt1p 12057 modxp1i 12791 numexp1 12796 dvexp 15233 dveflem 15248 plyid 15268 perfectlem2 15522 |
| Copyright terms: Public domain | W3C validator |