![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exp1 | GIF version |
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
exp1 | ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8903 | . . 3 ⊢ 1 ∈ ℕ | |
2 | expnnval 10493 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = (seq1( · , (ℕ × {𝐴}))‘1)) |
4 | 1zzd 9253 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℤ) | |
5 | elnnuz 9537 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ≥‘1)) | |
6 | fvconst2g 5722 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴) | |
7 | 5, 6 | sylan2br 288 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) = 𝐴) |
8 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → 𝐴 ∈ ℂ) | |
9 | 7, 8 | eqeltrd 2252 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ) |
10 | mulcl 7913 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
11 | 10 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
12 | 4, 9, 11 | seq3-1 10430 | . 2 ⊢ (𝐴 ∈ ℂ → (seq1( · , (ℕ × {𝐴}))‘1) = ((ℕ × {𝐴})‘1)) |
13 | fvconst2g 5722 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴) | |
14 | 1, 13 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴) |
15 | 3, 12, 14 | 3eqtrd 2212 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 {csn 3589 × cxp 4618 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 1c1 7787 · cmul 7791 ℕcn 8892 ℤ≥cuz 9501 seqcseq 10415 ↑cexp 10489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 df-seqfrec 10416 df-exp 10490 |
This theorem is referenced by: expp1 10497 expn1ap0 10500 expcllem 10501 expap0 10520 expp1zap 10539 expm1ap 10540 sqval 10548 expnbnd 10613 exp1d 10618 geoisum1 11495 ef4p 11670 efgt1p2 11671 efgt1p 11672 dvexp 13746 dveflem 13758 |
Copyright terms: Public domain | W3C validator |