ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst2 GIF version

Theorem climconst2 10945
Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst2.1 (ℤ𝑀) ⊆ 𝑍
climconst2.2 𝑍 ∈ V
Assertion
Ref Expression
climconst2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)

Proof of Theorem climconst2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2113 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simpr 109 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 climconst2.2 . . 3 𝑍 ∈ V
4 snexg 4066 . . . 4 (𝐴 ∈ ℂ → {𝐴} ∈ V)
54adantr 272 . . 3 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → {𝐴} ∈ V)
6 xpexg 4611 . . 3 ((𝑍 ∈ V ∧ {𝐴} ∈ V) → (𝑍 × {𝐴}) ∈ V)
73, 5, 6sylancr 408 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ∈ V)
8 simpl 108 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝐴 ∈ ℂ)
9 climconst2.1 . . . 4 (ℤ𝑀) ⊆ 𝑍
109sseli 3057 . . 3 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
11 fvconst2g 5586 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘𝑍) → ((𝑍 × {𝐴})‘𝑘) = 𝐴)
128, 10, 11syl2an 285 . 2 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑘) = 𝐴)
131, 2, 7, 8, 12climconst 10944 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  Vcvv 2655  wss 3035  {csn 3491   class class class wbr 3893   × cxp 4495  cfv 5079  cc 7538  cz 8951  cuz 9221  cli 10932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulrcl 7637  ax-addcom 7638  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-1rid 7645  ax-0id 7646  ax-rnegex 7647  ax-precex 7648  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-apti 7653  ax-pre-ltadd 7654  ax-pre-mulgt0 7655  ax-pre-mulext 7656
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-recs 6153  df-frec 6239  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-reap 8248  df-ap 8255  df-div 8339  df-inn 8624  df-2 8682  df-n0 8875  df-z 8952  df-uz 9222  df-rp 9337  df-seqfrec 10105  df-exp 10179  df-cj 10500  df-rsqrt 10655  df-abs 10656  df-clim 10933
This theorem is referenced by:  climz  10946  serclim0  10959  climaddc1  10983  climmulc2  10985  climsubc1  10986  climsubc2  10987  climlec2  10995
  Copyright terms: Public domain W3C validator