| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climconst2 | GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climconst2.1 | ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 |
| climconst2.2 | ⊢ 𝑍 ∈ V |
| Ref | Expression |
|---|---|
| climconst2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 2 | simpr 110 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 3 | climconst2.2 | . . 3 ⊢ 𝑍 ∈ V | |
| 4 | snexg 4247 | . . . 4 ⊢ (𝐴 ∈ ℂ → {𝐴} ∈ V) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → {𝐴} ∈ V) |
| 6 | xpexg 4810 | . . 3 ⊢ ((𝑍 ∈ V ∧ {𝐴} ∈ V) → (𝑍 × {𝐴}) ∈ V) | |
| 7 | 3, 5, 6 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ∈ V) |
| 8 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝐴 ∈ ℂ) | |
| 9 | climconst2.1 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 | |
| 10 | 9 | sseli 3200 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
| 11 | fvconst2g 5826 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑘) = 𝐴) | |
| 12 | 8, 10, 11 | syl2an 289 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑘) = 𝐴) |
| 13 | 1, 2, 7, 8, 12 | climconst 11767 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 {csn 3646 class class class wbr 4062 × cxp 4694 ‘cfv 5294 ℂcc 7965 ℤcz 9414 ℤ≥cuz 9690 ⇝ cli 11755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-rsqrt 11475 df-abs 11476 df-clim 11756 |
| This theorem is referenced by: climz 11769 serclim0 11782 climaddc1 11806 climmulc2 11808 climsubc1 11809 climsubc2 11810 climlec2 11818 prodfclim1 12021 |
| Copyright terms: Public domain | W3C validator |