![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climconst2 | GIF version |
Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climconst2.1 | ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 |
climconst2.2 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
climconst2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | simpr 110 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
3 | climconst2.2 | . . 3 ⊢ 𝑍 ∈ V | |
4 | snexg 4186 | . . . 4 ⊢ (𝐴 ∈ ℂ → {𝐴} ∈ V) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → {𝐴} ∈ V) |
6 | xpexg 4742 | . . 3 ⊢ ((𝑍 ∈ V ∧ {𝐴} ∈ V) → (𝑍 × {𝐴}) ∈ V) | |
7 | 3, 5, 6 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ∈ V) |
8 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝐴 ∈ ℂ) | |
9 | climconst2.1 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 | |
10 | 9 | sseli 3153 | . . 3 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
11 | fvconst2g 5732 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑘) = 𝐴) | |
12 | 8, 10, 11 | syl2an 289 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑘) = 𝐴) |
13 | 1, 2, 7, 8, 12 | climconst 11300 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 {csn 3594 class class class wbr 4005 × cxp 4626 ‘cfv 5218 ℂcc 7811 ℤcz 9255 ℤ≥cuz 9530 ⇝ cli 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-rsqrt 11009 df-abs 11010 df-clim 11289 |
This theorem is referenced by: climz 11302 serclim0 11315 climaddc1 11339 climmulc2 11341 climsubc1 11342 climsubc2 11343 climlec2 11351 prodfclim1 11554 |
Copyright terms: Public domain | W3C validator |