ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst2 GIF version

Theorem climconst2 11646
Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst2.1 (ℤ𝑀) ⊆ 𝑍
climconst2.2 𝑍 ∈ V
Assertion
Ref Expression
climconst2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)

Proof of Theorem climconst2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simpr 110 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 climconst2.2 . . 3 𝑍 ∈ V
4 snexg 4232 . . . 4 (𝐴 ∈ ℂ → {𝐴} ∈ V)
54adantr 276 . . 3 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → {𝐴} ∈ V)
6 xpexg 4793 . . 3 ((𝑍 ∈ V ∧ {𝐴} ∈ V) → (𝑍 × {𝐴}) ∈ V)
73, 5, 6sylancr 414 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ∈ V)
8 simpl 109 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → 𝐴 ∈ ℂ)
9 climconst2.1 . . . 4 (ℤ𝑀) ⊆ 𝑍
109sseli 3190 . . 3 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
11 fvconst2g 5805 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘𝑍) → ((𝑍 × {𝐴})‘𝑘) = 𝐴)
128, 10, 11syl2an 289 . 2 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑘) = 𝐴)
131, 2, 7, 8, 12climconst 11645 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167  {csn 3634   class class class wbr 4047   × cxp 4677  cfv 5276  cc 7930  cz 9379  cuz 9655  cli 11633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-rsqrt 11353  df-abs 11354  df-clim 11634
This theorem is referenced by:  climz  11647  serclim0  11660  climaddc1  11684  climmulc2  11686  climsubc1  11687  climsubc2  11688  climlec2  11696  prodfclim1  11899
  Copyright terms: Public domain W3C validator