| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrim | GIF version | ||
| Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rhmf1o.b | ⊢ 𝐵 = (Base‘𝑅) |
| rhmf1o.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| isrim | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrim0 14038 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | |
| 2 | rhmf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rhmf1o.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | 2, 3 | rhmf1o 14045 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| 5 | 4 | bicomd 141 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| 6 | 5 | pm5.32i 454 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
| 7 | 1, 6 | bitri 184 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ◡ccnv 4692 –1-1-onto→wf1o 5289 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 RingHom crh 14027 RingIso crs 14028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mhm 13406 df-grp 13450 df-ghm 13692 df-mgp 13798 df-ur 13837 df-ring 13875 df-rhm 14029 df-rim 14030 |
| This theorem is referenced by: rimf1o 14047 |
| Copyright terms: Public domain | W3C validator |