| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrnqi | GIF version | ||
| Description: Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7504. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| Ref | Expression |
|---|---|
| ltrnqi | ⊢ (𝐴 <Q 𝐵 → (*Q‘𝐵) <Q (*Q‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7449 | . . . 4 ⊢ <Q ⊆ (Q × Q) | |
| 2 | 1 | brel 4716 | . . 3 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
| 3 | ltrnqg 7504 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ (*Q‘𝐵) <Q (*Q‘𝐴))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 <Q 𝐵 → (𝐴 <Q 𝐵 ↔ (*Q‘𝐵) <Q (*Q‘𝐴))) |
| 5 | 4 | ibi 176 | 1 ⊢ (𝐴 <Q 𝐵 → (*Q‘𝐵) <Q (*Q‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 Qcnq 7364 *Qcrq 7368 <Q cltq 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-mi 7390 df-lti 7391 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 |
| This theorem is referenced by: addnqprllem 7611 addnqprulem 7612 recexprlemdisj 7714 recexprlemloc 7715 recexprlem1ssl 7717 recexprlem1ssu 7718 caucvgprlemk 7749 caucvgprprlemk 7767 |
| Copyright terms: Public domain | W3C validator |