| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgprpr.lim | 
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | 
| 2 | 1 | caucvgprprlemell 7752 | 
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 3 | 2 | simprbi 275 | 
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 4 | 3 | adantl 277 | 
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑏 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 5 |   | caucvgprpr.f | 
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶P) | 
| 6 | 5 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝐹:N⟶P) | 
| 7 |   | simprl 529 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝑏 ∈ N) | 
| 8 | 6, 7 | ffvelcdmd 5698 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝐹‘𝑏) ∈ P) | 
| 9 |   | prop 7542 | 
. . . . 5
⊢ ((𝐹‘𝑏) ∈ P →
〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈
P) | 
| 10 | 8, 9 | syl 14 | 
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 〈(1st
‘(𝐹‘𝑏)), (2nd
‘(𝐹‘𝑏))〉 ∈
P) | 
| 11 |   | simprr 531 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 12 | 1 | caucvgprprlemell 7752 | 
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 13 | 12 | simplbi 274 | 
. . . . . . . 8
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) | 
| 14 | 13 | ad2antlr 489 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝑠 ∈ Q) | 
| 15 |   | nnnq 7489 | 
. . . . . . . . 9
⊢ (𝑏 ∈ N →
[〈𝑏,
1o〉] ~Q ∈
Q) | 
| 16 |   | recclnq 7459 | 
. . . . . . . . 9
⊢
([〈𝑏,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . . 8
⊢ (𝑏 ∈ N →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 18 | 17 | ad2antrl 490 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 19 |   | addclnq 7442 | 
. . . . . . 7
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 20 | 14, 18, 19 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 21 |   | nqprl 7618 | 
. . . . . 6
⊢ (((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧ (𝐹‘𝑏) ∈ P) → ((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 22 | 20, 8, 21 | syl2anc 411 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 23 | 11, 22 | mpbird 167 | 
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) | 
| 24 |   | prnmaxl 7555 | 
. . . 4
⊢
((〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈ P ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹‘𝑏))(𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) | 
| 25 | 10, 23, 24 | syl2anc 411 | 
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹‘𝑏))(𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) | 
| 26 | 18 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 27 | 14 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑠 ∈ Q) | 
| 28 |   | ltaddnq 7474 | 
. . . . . . . 8
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) | 
| 29 | 26, 27, 28 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) | 
| 30 |   | addcomnqg 7448 | 
. . . . . . . 8
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 31 | 26, 27, 30 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 32 | 29, 31 | breqtrd 4059 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 33 |   | simprr 531 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) | 
| 34 |   | ltsonq 7465 | 
. . . . . . 7
⊢ 
<Q Or Q | 
| 35 |   | ltrelnq 7432 | 
. . . . . . 7
⊢ 
<Q ⊆ (Q ×
Q) | 
| 36 | 34, 35 | sotri 5065 | 
. . . . . 6
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎) | 
| 37 | 32, 33, 36 | syl2anc 411 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎) | 
| 38 | 10 | adantr 276 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 〈(1st
‘(𝐹‘𝑏)), (2nd
‘(𝐹‘𝑏))〉 ∈
P) | 
| 39 |   | simprl 529 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑎 ∈ (1st ‘(𝐹‘𝑏))) | 
| 40 |   | elprnql 7548 | 
. . . . . . 7
⊢
((〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈ P ∧ 𝑎 ∈ (1st
‘(𝐹‘𝑏))) → 𝑎 ∈ Q) | 
| 41 | 38, 39, 40 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑎 ∈ Q) | 
| 42 |   | ltexnqq 7475 | 
. . . . . 6
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑎 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎 ↔ ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎)) | 
| 43 | 26, 41, 42 | syl2anc 411 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
((*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎 ↔ ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎)) | 
| 44 | 37, 43 | mpbid 147 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) | 
| 45 | 27 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑠 ∈ Q) | 
| 46 | 26 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) | 
| 47 |   | addcomnqg 7448 | 
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) =
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) | 
| 48 | 45, 46, 47 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) =
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) | 
| 49 | 33 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) | 
| 50 | 48, 49 | eqbrtrrd 4057 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q 𝑎) | 
| 51 |   | simpr 110 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) | 
| 52 | 50, 51 | breqtrrd 4061 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡)) | 
| 53 |   | simplr 528 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ Q) | 
| 54 |   | ltanqg 7467 | 
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑡 ∈ Q
∧ (*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 <Q
𝑡 ↔
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡))) | 
| 55 | 45, 53, 46, 54 | syl3anc 1249 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ↔
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡))) | 
| 56 | 52, 55 | mpbird 167 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑠 <Q 𝑡) | 
| 57 | 7 | ad3antrrr 492 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑏 ∈ N) | 
| 58 |   | addcomnqg 7448 | 
. . . . . . . . . . . . 13
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑡 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 59 | 46, 53, 58 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 60 | 59, 51 | eqtr3d 2231 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) = 𝑎) | 
| 61 | 39 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑎 ∈ (1st ‘(𝐹‘𝑏))) | 
| 62 | 60, 61 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) | 
| 63 |   | addclnq 7442 | 
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 64 | 53, 46, 63 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) | 
| 65 | 8 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝐹‘𝑏) ∈ P) | 
| 66 |   | nqprl 7618 | 
. . . . . . . . . . 11
⊢ (((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧ (𝐹‘𝑏) ∈ P) → ((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 67 | 64, 65, 66 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → ((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 68 | 62, 67 | mpbid 147 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 69 |   | opeq1 3808 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑏 → 〈𝑟, 1o〉 = 〈𝑏,
1o〉) | 
| 70 | 69 | eceq1d 6628 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑏 → [〈𝑟, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) | 
| 71 | 70 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑏 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) | 
| 72 | 71 | oveq2d 5938 | 
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑏 → (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 73 | 72 | breq2d 4045 | 
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑏 → (𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )))) | 
| 74 | 73 | abbidv 2314 | 
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑏 → {𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}) | 
| 75 | 72 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑏 → ((𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞)) | 
| 76 | 75 | abbidv 2314 | 
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑏 → {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}) | 
| 77 | 74, 76 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ (𝑟 = 𝑏 → 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 78 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑟 = 𝑏 → (𝐹‘𝑟) = (𝐹‘𝑏)) | 
| 79 | 77, 78 | breq12d 4046 | 
. . . . . . . . . 10
⊢ (𝑟 = 𝑏 → (〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 80 | 79 | rspcev 2868 | 
. . . . . . . . 9
⊢ ((𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑡
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) | 
| 81 | 57, 68, 80 | syl2anc 411 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) | 
| 82 | 1 | caucvgprprlemell 7752 | 
. . . . . . . 8
⊢ (𝑡 ∈ (1st
‘𝐿) ↔ (𝑡 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 83 | 53, 81, 82 | sylanbrc 417 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ (1st ‘𝐿)) | 
| 84 | 56, 83 | jca 306 | 
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | 
| 85 | 84 | ex 115 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) →
(((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎 → (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) | 
| 86 | 85 | reximdva 2599 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → (∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎 → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) | 
| 87 | 44, 86 | mpd 13 | 
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → ∃𝑡 ∈ Q (𝑠 <Q
𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | 
| 88 | 25, 87 | rexlimddv 2619 | 
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | 
| 89 | 4, 88 | rexlimddv 2619 | 
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q
𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |