ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopl GIF version

Theorem caucvgprprlemopl 7473
Description: Lemma for caucvgprpr 7488. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑡,𝑟   𝑢,𝐹,𝑡   𝑡,𝐿   𝑝,𝑙,𝑞,𝑟,𝑠,𝑡   𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemopl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemell 7461 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
32simprbi 273 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
43adantl 275 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
5 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
65ad2antrr 479 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝐹:NP)
7 simprl 505 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑏N)
86, 7ffvelrnd 5524 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝐹𝑏) ∈ P)
9 prop 7251 . . . . 5 ((𝐹𝑏) ∈ P → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
108, 9syl 14 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
11 simprr 506 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
121caucvgprprlemell 7461 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
1312simplbi 272 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1413ad2antlr 480 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑠Q)
15 nnnq 7198 . . . . . . . . 9 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
16 recclnq 7168 . . . . . . . . 9 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1715, 16syl 14 . . . . . . . 8 (𝑏N → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1817ad2antrl 481 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
19 addclnq 7151 . . . . . . 7 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
2014, 18, 19syl2anc 408 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
21 nqprl 7327 . . . . . 6 (((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2220, 8, 21syl2anc 408 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2311, 22mpbird 166 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
24 prnmaxl 7264 . . . 4 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
2510, 23, 24syl2anc 408 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
2618adantr 274 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
2714adantr 274 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑠Q)
28 ltaddnq 7183 . . . . . . . 8 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑠Q) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
2926, 27, 28syl2anc 408 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
30 addcomnqg 7157 . . . . . . . 8 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑠Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3126, 27, 30syl2anc 408 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3229, 31breqtrd 3924 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
33 simprr 506 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
34 ltsonq 7174 . . . . . . 7 <Q Or Q
35 ltrelnq 7141 . . . . . . 7 <Q ⊆ (Q × Q)
3634, 35sotri 4904 . . . . . 6 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎)
3732, 33, 36syl2anc 408 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎)
3810adantr 274 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
39 simprl 505 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
40 elprnql 7257 . . . . . . 7 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P𝑎 ∈ (1st ‘(𝐹𝑏))) → 𝑎Q)
4138, 39, 40syl2anc 408 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑎Q)
42 ltexnqq 7184 . . . . . 6 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑎Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎))
4326, 41, 42syl2anc 408 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎))
4437, 43mpbid 146 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎)
4527ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠Q)
4626ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
47 addcomnqg 7157 . . . . . . . . . . 11 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
4845, 46, 47syl2anc 408 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
4933ad2antrr 479 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
5048, 49eqbrtrrd 3922 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q 𝑎)
51 simpr 109 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎)
5250, 51breqtrrd 3926 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡))
53 simplr 504 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡Q)
54 ltanqg 7176 . . . . . . . . 9 ((𝑠Q𝑡Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡)))
5545, 53, 46, 54syl3anc 1201 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡)))
5652, 55mpbird 166 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠 <Q 𝑡)
577ad3antrrr 483 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑏N)
58 addcomnqg 7157 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑡Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
5946, 53, 58syl2anc 408 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
6059, 51eqtr3d 2152 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = 𝑎)
6139ad2antrr 479 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
6260, 61eqeltrd 2194 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
63 addclnq 7151 . . . . . . . . . . . 12 ((𝑡Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
6453, 46, 63syl2anc 408 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
658ad3antrrr 483 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝐹𝑏) ∈ P)
66 nqprl 7327 . . . . . . . . . . 11 (((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6764, 65, 66syl2anc 408 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6862, 67mpbid 146 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
69 opeq1 3675 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑏 → ⟨𝑟, 1o⟩ = ⟨𝑏, 1o⟩)
7069eceq1d 6433 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
7170fveq2d 5393 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
7271oveq2d 5758 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
7372breq2d 3911 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
7473abbidv 2235 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))})
7572breq1d 3909 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → ((𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞))
7675abbidv 2235 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞})
7774, 76opeq12d 3683 . . . . . . . . . . 11 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
78 fveq2 5389 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
7977, 78breq12d 3912 . . . . . . . . . 10 (𝑟 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
8079rspcev 2763 . . . . . . . . 9 ((𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
8157, 68, 80syl2anc 408 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
821caucvgprprlemell 7461 . . . . . . . 8 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
8353, 81, 82sylanbrc 413 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ (1st𝐿))
8456, 83jca 304 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8584ex 114 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) → (((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎 → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8685reximdva 2511 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎 → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8744, 86mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8825, 87rexlimddv 2531 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
894, 88rexlimddv 2531 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  {cab 2103  wral 2393  wrex 2394  {crab 2397  cop 3500   class class class wbr 3899  wf 5089  cfv 5093  (class class class)co 5742  1st c1st 6004  2nd c2nd 6005  1oc1o 6274  [cec 6395  Ncnpi 7048   <N clti 7051   ~Q ceq 7055  Qcnq 7056   +Q cplq 7058  *Qcrq 7060   <Q cltq 7061  Pcnp 7067   +P cpp 7069  <P cltp 7071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-inp 7242  df-iltp 7246
This theorem is referenced by:  caucvgprprlemrnd  7477
  Copyright terms: Public domain W3C validator