ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopl GIF version

Theorem caucvgprprlemopl 7759
Description: Lemma for caucvgprpr 7774. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑡,𝑟   𝑢,𝐹,𝑡   𝑡,𝐿   𝑝,𝑙,𝑞,𝑟,𝑠,𝑡   𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemopl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemell 7747 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
32simprbi 275 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
43adantl 277 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
5 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
65ad2antrr 488 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝐹:NP)
7 simprl 529 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑏N)
86, 7ffvelcdmd 5695 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝐹𝑏) ∈ P)
9 prop 7537 . . . . 5 ((𝐹𝑏) ∈ P → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
108, 9syl 14 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
11 simprr 531 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
121caucvgprprlemell 7747 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
1312simplbi 274 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1413ad2antlr 489 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑠Q)
15 nnnq 7484 . . . . . . . . 9 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
16 recclnq 7454 . . . . . . . . 9 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1715, 16syl 14 . . . . . . . 8 (𝑏N → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1817ad2antrl 490 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
19 addclnq 7437 . . . . . . 7 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
2014, 18, 19syl2anc 411 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
21 nqprl 7613 . . . . . 6 (((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2220, 8, 21syl2anc 411 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2311, 22mpbird 167 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
24 prnmaxl 7550 . . . 4 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
2510, 23, 24syl2anc 411 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
2618adantr 276 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
2714adantr 276 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑠Q)
28 ltaddnq 7469 . . . . . . . 8 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑠Q) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
2926, 27, 28syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
30 addcomnqg 7443 . . . . . . . 8 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑠Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3126, 27, 30syl2anc 411 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3229, 31breqtrd 4056 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
33 simprr 531 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
34 ltsonq 7460 . . . . . . 7 <Q Or Q
35 ltrelnq 7427 . . . . . . 7 <Q ⊆ (Q × Q)
3634, 35sotri 5062 . . . . . 6 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎)
3732, 33, 36syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎)
3810adantr 276 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
39 simprl 529 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
40 elprnql 7543 . . . . . . 7 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P𝑎 ∈ (1st ‘(𝐹𝑏))) → 𝑎Q)
4138, 39, 40syl2anc 411 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → 𝑎Q)
42 ltexnqq 7470 . . . . . 6 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑎Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎))
4326, 41, 42syl2anc 411 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎))
4437, 43mpbid 147 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎)
4527ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠Q)
4626ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
47 addcomnqg 7443 . . . . . . . . . . 11 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
4845, 46, 47syl2anc 411 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠))
4933ad2antrr 488 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)
5048, 49eqbrtrrd 4054 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q 𝑎)
51 simpr 110 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎)
5250, 51breqtrrd 4058 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡))
53 simplr 528 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡Q)
54 ltanqg 7462 . . . . . . . . 9 ((𝑠Q𝑡Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡)))
5545, 53, 46, 54syl3anc 1249 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡)))
5652, 55mpbird 167 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠 <Q 𝑡)
577ad3antrrr 492 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑏N)
58 addcomnqg 7443 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q𝑡Q) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
5946, 53, 58syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
6059, 51eqtr3d 2228 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = 𝑎)
6139ad2antrr 488 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
6260, 61eqeltrd 2270 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
63 addclnq 7437 . . . . . . . . . . . 12 ((𝑡Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
6453, 46, 63syl2anc 411 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
658ad3antrrr 492 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝐹𝑏) ∈ P)
66 nqprl 7613 . . . . . . . . . . 11 (((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6764, 65, 66syl2anc 411 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ((𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6862, 67mpbid 147 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
69 opeq1 3805 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑏 → ⟨𝑟, 1o⟩ = ⟨𝑏, 1o⟩)
7069eceq1d 6625 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
7170fveq2d 5559 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
7271oveq2d 5935 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
7372breq2d 4042 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
7473abbidv 2311 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))})
7572breq1d 4040 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → ((𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞))
7675abbidv 2311 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞})
7774, 76opeq12d 3813 . . . . . . . . . . 11 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
78 fveq2 5555 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
7977, 78breq12d 4043 . . . . . . . . . 10 (𝑟 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
8079rspcev 2865 . . . . . . . . 9 ((𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
8157, 68, 80syl2anc 411 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
821caucvgprprlemell 7747 . . . . . . . 8 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
8353, 81, 82sylanbrc 417 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ (1st𝐿))
8456, 83jca 306 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8584ex 115 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) → (((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎 → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8685reximdva 2596 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → (∃𝑡Q ((*Q‘[⟨𝑏, 1o⟩] ~Q ) +Q 𝑡) = 𝑎 → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8744, 86mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8825, 87rexlimddv 2616 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
894, 88rexlimddv 2616 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {crab 2476  cop 3622   class class class wbr 4030  wf 5251  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  1oc1o 6464  [cec 6587  Ncnpi 7334   <N clti 7337   ~Q ceq 7341  Qcnq 7342   +Q cplq 7344  *Qcrq 7346   <Q cltq 7347  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-inp 7528  df-iltp 7532
This theorem is referenced by:  caucvgprprlemrnd  7763
  Copyright terms: Public domain W3C validator