Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
2 | 1 | caucvgprprlemell 7626 |
. . . 4
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
3 | 2 | simprbi 273 |
. . 3
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
4 | 3 | adantl 275 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑏 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
5 | | caucvgprpr.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶P) |
6 | 5 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝐹:N⟶P) |
7 | | simprl 521 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝑏 ∈ N) |
8 | 6, 7 | ffvelrnd 5621 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝐹‘𝑏) ∈ P) |
9 | | prop 7416 |
. . . . 5
⊢ ((𝐹‘𝑏) ∈ P →
〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈
P) |
10 | 8, 9 | syl 14 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 〈(1st
‘(𝐹‘𝑏)), (2nd
‘(𝐹‘𝑏))〉 ∈
P) |
11 | | simprr 522 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
12 | 1 | caucvgprprlemell 7626 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
13 | 12 | simplbi 272 |
. . . . . . . 8
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
14 | 13 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → 𝑠 ∈ Q) |
15 | | nnnq 7363 |
. . . . . . . . 9
⊢ (𝑏 ∈ N →
[〈𝑏,
1o〉] ~Q ∈
Q) |
16 | | recclnq 7333 |
. . . . . . . . 9
⊢
([〈𝑏,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) |
17 | 15, 16 | syl 14 |
. . . . . . . 8
⊢ (𝑏 ∈ N →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) |
18 | 17 | ad2antrl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) |
19 | | addclnq 7316 |
. . . . . . 7
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) |
20 | 14, 18, 19 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) |
21 | | nqprl 7492 |
. . . . . 6
⊢ (((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧ (𝐹‘𝑏) ∈ P) → ((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
22 | 20, 8, 21 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ((𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
23 | 11, 22 | mpbird 166 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) |
24 | | prnmaxl 7429 |
. . . 4
⊢
((〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈ P ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹‘𝑏))(𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) |
25 | 10, 23, 24 | syl2anc 409 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹‘𝑏))(𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) |
26 | 18 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) |
27 | 14 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑠 ∈ Q) |
28 | | ltaddnq 7348 |
. . . . . . . 8
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) |
29 | 26, 27, 28 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) |
30 | | addcomnqg 7322 |
. . . . . . . 8
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
31 | 26, 27, 30 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) = (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
32 | 29, 31 | breqtrd 4008 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
33 | | simprr 522 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) |
34 | | ltsonq 7339 |
. . . . . . 7
⊢
<Q Or Q |
35 | | ltrelnq 7306 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
36 | 34, 35 | sotri 4999 |
. . . . . 6
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎) |
37 | 32, 33, 36 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎) |
38 | 10 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 〈(1st
‘(𝐹‘𝑏)), (2nd
‘(𝐹‘𝑏))〉 ∈
P) |
39 | | simprl 521 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑎 ∈ (1st ‘(𝐹‘𝑏))) |
40 | | elprnql 7422 |
. . . . . . 7
⊢
((〈(1st ‘(𝐹‘𝑏)), (2nd ‘(𝐹‘𝑏))〉 ∈ P ∧ 𝑎 ∈ (1st
‘(𝐹‘𝑏))) → 𝑎 ∈ Q) |
41 | 38, 39, 40 | syl2anc 409 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → 𝑎 ∈ Q) |
42 | | ltexnqq 7349 |
. . . . . 6
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑎 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎 ↔ ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎)) |
43 | 26, 41, 42 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) →
((*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑎 ↔ ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎)) |
44 | 37, 43 | mpbid 146 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → ∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) |
45 | 27 | ad2antrr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑠 ∈ Q) |
46 | 26 | ad2antrr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) |
47 | | addcomnqg 7322 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) =
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) |
48 | 45, 46, 47 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) =
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠)) |
49 | 33 | ad2antrr 480 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎) |
50 | 48, 49 | eqbrtrrd 4006 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q 𝑎) |
51 | | simpr 109 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) |
52 | 50, 51 | breqtrrd 4010 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡)) |
53 | | simplr 520 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ Q) |
54 | | ltanqg 7341 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑡 ∈ Q
∧ (*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑠 <Q
𝑡 ↔
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡))) |
55 | 45, 53, 46, 54 | syl3anc 1228 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ↔
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑠) <Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡))) |
56 | 52, 55 | mpbird 166 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑠 <Q 𝑡) |
57 | 7 | ad3antrrr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑏 ∈ N) |
58 | | addcomnqg 7322 |
. . . . . . . . . . . . 13
⊢
(((*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q ∧ 𝑡 ∈ Q) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
59 | 46, 53, 58 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) →
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
60 | 59, 51 | eqtr3d 2200 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) = 𝑎) |
61 | 39 | ad2antrr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑎 ∈ (1st ‘(𝐹‘𝑏))) |
62 | 60, 61 | eqeltrd 2243 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏))) |
63 | | addclnq 7316 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ Q ∧
(*Q‘[〈𝑏, 1o〉]
~Q ) ∈ Q) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) |
64 | 53, 46, 63 | syl2anc 409 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q) |
65 | 8 | ad3antrrr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝐹‘𝑏) ∈ P) |
66 | | nqprl 7492 |
. . . . . . . . . . 11
⊢ (((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ Q ∧ (𝐹‘𝑏) ∈ P) → ((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
67 | 64, 65, 66 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → ((𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) ∈ (1st ‘(𝐹‘𝑏)) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
68 | 62, 67 | mpbid 146 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
69 | | opeq1 3758 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑏 → 〈𝑟, 1o〉 = 〈𝑏,
1o〉) |
70 | 69 | eceq1d 6537 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑏 → [〈𝑟, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) |
71 | 70 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑏 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) |
72 | 71 | oveq2d 5858 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑏 → (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
73 | 72 | breq2d 3994 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑏 → (𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )))) |
74 | 73 | abbidv 2284 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑏 → {𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}) |
75 | 72 | breq1d 3992 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑏 → ((𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞)) |
76 | 75 | abbidv 2284 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑏 → {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}) |
77 | 74, 76 | opeq12d 3766 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑏 → 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉) |
78 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑏 → (𝐹‘𝑟) = (𝐹‘𝑏)) |
79 | 77, 78 | breq12d 3995 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑏 → (〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
80 | 79 | rspcev 2830 |
. . . . . . . . 9
⊢ ((𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑡
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) |
81 | 57, 68, 80 | syl2anc 409 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) |
82 | 1 | caucvgprprlemell 7626 |
. . . . . . . 8
⊢ (𝑡 ∈ (1st
‘𝐿) ↔ (𝑡 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑡 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
83 | 53, 81, 82 | sylanbrc 414 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ (1st ‘𝐿)) |
84 | 56, 83 | jca 304 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) ∧
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |
85 | 84 | ex 114 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑠 ∈ (1st
‘𝐿)) ∧ (𝑏 ∈ N ∧
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) ∧ 𝑡 ∈ Q) →
(((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎 → (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) |
86 | 85 | reximdva 2568 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → (∃𝑡 ∈ Q
((*Q‘[〈𝑏, 1o〉]
~Q ) +Q 𝑡) = 𝑎 → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)))) |
87 | 44, 86 | mpd 13 |
. . 3
⊢ ((((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹‘𝑏)) ∧ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑎)) → ∃𝑡 ∈ Q (𝑠 <Q
𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |
88 | 25, 87 | rexlimddv 2588 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) ∧ (𝑏 ∈ N ∧ 〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |
89 | 4, 88 | rexlimddv 2588 |
1
⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q
𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) |