ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringo2times GIF version

Theorem ringo2times 13708
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b 𝐵 = (Base‘𝑅)
ringadd2.p + = (+g𝑅)
ringadd2.t · = (.r𝑅)
ringo2times.u 1 = (1r𝑅)
Assertion
Ref Expression
ringo2times ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))

Proof of Theorem ringo2times
StepHypRef Expression
1 ringadd2.b . . . . 5 𝐵 = (Base‘𝑅)
2 ringadd2.t . . . . 5 · = (.r𝑅)
3 ringo2times.u . . . . 5 1 = (1r𝑅)
41, 2, 3ringlidm 13703 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → ( 1 · 𝐴) = 𝐴)
54eqcomd 2210 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝐴 = ( 1 · 𝐴))
65, 5oveq12d 5952 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
7 simpl 109 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝑅 ∈ Ring)
81, 3ringidcl 13700 . . . 4 (𝑅 ∈ Ring → 1𝐵)
98adantr 276 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 1𝐵)
10 simpr 110 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → 𝐴𝐵)
11 ringadd2.p . . . 4 + = (+g𝑅)
121, 11, 2ringdir 13699 . . 3 ((𝑅 ∈ Ring ∧ ( 1𝐵1𝐵𝐴𝐵)) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
137, 9, 9, 10, 12syl13anc 1251 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴)))
146, 13eqtr4d 2240 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  .rcmulr 12829  1rcur 13639  Ringcrg 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-mgp 13601  df-ur 13640  df-ring 13678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator