![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringo2times | GIF version |
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringadd2.b | โข ๐ต = (Baseโ๐ ) |
ringadd2.p | โข + = (+gโ๐ ) |
ringadd2.t | โข ยท = (.rโ๐ ) |
ringo2times.u | โข 1 = (1rโ๐ ) |
Ref | Expression |
---|---|
ringo2times | โข ((๐ โ Ring โง ๐ด โ ๐ต) โ (๐ด + ๐ด) = (( 1 + 1 ) ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringadd2.b | . . . . 5 โข ๐ต = (Baseโ๐ ) | |
2 | ringadd2.t | . . . . 5 โข ยท = (.rโ๐ ) | |
3 | ringo2times.u | . . . . 5 โข 1 = (1rโ๐ ) | |
4 | 1, 2, 3 | ringlidm 13270 | . . . 4 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ ( 1 ยท ๐ด) = ๐ด) |
5 | 4 | eqcomd 2193 | . . 3 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ ๐ด = ( 1 ยท ๐ด)) |
6 | 5, 5 | oveq12d 5906 | . 2 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ (๐ด + ๐ด) = (( 1 ยท ๐ด) + ( 1 ยท ๐ด))) |
7 | simpl 109 | . . 3 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ ๐ โ Ring) | |
8 | 1, 3 | ringidcl 13267 | . . . 4 โข (๐ โ Ring โ 1 โ ๐ต) |
9 | 8 | adantr 276 | . . 3 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ 1 โ ๐ต) |
10 | simpr 110 | . . 3 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ ๐ด โ ๐ต) | |
11 | ringadd2.p | . . . 4 โข + = (+gโ๐ ) | |
12 | 1, 11, 2 | ringdir 13266 | . . 3 โข ((๐ โ Ring โง ( 1 โ ๐ต โง 1 โ ๐ต โง ๐ด โ ๐ต)) โ (( 1 + 1 ) ยท ๐ด) = (( 1 ยท ๐ด) + ( 1 ยท ๐ด))) |
13 | 7, 9, 9, 10, 12 | syl13anc 1250 | . 2 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ (( 1 + 1 ) ยท ๐ด) = (( 1 ยท ๐ด) + ( 1 ยท ๐ด))) |
14 | 6, 13 | eqtr4d 2223 | 1 โข ((๐ โ Ring โง ๐ด โ ๐ต) โ (๐ด + ๐ด) = (( 1 + 1 ) ยท ๐ด)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 = wceq 1363 โ wcel 2158 โcfv 5228 (class class class)co 5888 Basecbs 12475 +gcplusg 12550 .rcmulr 12551 1rcur 13206 Ringcrg 13243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-pre-ltirr 7936 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-ltxr 8010 df-inn 8933 df-2 8991 df-3 8992 df-ndx 12478 df-slot 12479 df-base 12481 df-sets 12482 df-plusg 12563 df-mulr 12564 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12839 df-mgp 13171 df-ur 13207 df-ring 13245 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |