![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringo2times | GIF version |
Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringadd2.b | ⊢ 𝐵 = (Base‘𝑅) |
ringadd2.p | ⊢ + = (+g‘𝑅) |
ringadd2.t | ⊢ · = (.r‘𝑅) |
ringo2times.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringo2times | ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringadd2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringadd2.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
3 | ringo2times.u | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
4 | 1, 2, 3 | ringlidm 13519 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) = 𝐴) |
5 | 4 | eqcomd 2199 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 𝐴 = ( 1 · 𝐴)) |
6 | 5, 5 | oveq12d 5936 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴))) |
7 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ Ring) | |
8 | 1, 3 | ringidcl 13516 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 1 ∈ 𝐵) |
10 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
11 | ringadd2.p | . . . 4 ⊢ + = (+g‘𝑅) | |
12 | 1, 11, 2 | ringdir 13515 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵)) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴))) |
13 | 7, 9, 9, 10, 12 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (( 1 + 1 ) · 𝐴) = (( 1 · 𝐴) + ( 1 · 𝐴))) |
14 | 6, 13 | eqtr4d 2229 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 1rcur 13455 Ringcrg 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mgp 13417 df-ur 13456 df-ring 13494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |