![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znzrhfo | GIF version |
Description: The ℤ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
znzrhfo.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znzrhfo.b | ⊢ 𝐵 = (Base‘𝑌) |
znzrhfo.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
Ref | Expression |
---|---|
znzrhfo | ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) | |
2 | zringbas 14084 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
3 | 2 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring)) |
4 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
5 | zringring 14081 | . . . . 5 ⊢ ℤring ∈ Ring | |
6 | rspex 13970 | . . . . . . 7 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ (RSpan‘ℤring) ∈ V |
8 | snexg 4213 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
9 | fvexg 5573 | . . . . . 6 ⊢ (((RSpan‘ℤring) ∈ V ∧ {𝑁} ∈ V) → ((RSpan‘ℤring)‘{𝑁}) ∈ V) | |
10 | 7, 8, 9 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((RSpan‘ℤring)‘{𝑁}) ∈ V) |
11 | eqgex 13291 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ V) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V) | |
12 | 5, 10, 11 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V) |
13 | 5 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ℤring ∈ Ring) |
14 | 1, 3, 4, 12, 13 | quslem 12907 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) |
15 | eqid 2193 | . . . . . 6 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
16 | znzrhfo.y | . . . . . 6 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
17 | eqid 2193 | . . . . . 6 ⊢ (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) | |
18 | 15, 16, 17 | znbas 14132 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (Base‘𝑌)) |
19 | znzrhfo.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
20 | 18, 19 | eqtr4di 2244 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵) |
21 | foeq3 5474 | . . . 4 ⊢ ((ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→𝐵)) | |
22 | 20, 21 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→𝐵)) |
23 | 14, 22 | mpbid 147 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→𝐵) |
24 | znzrhfo.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
25 | 15, 17, 16, 24 | znzrh2 14134 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) |
26 | foeq1 5472 | . . 3 ⊢ (𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) → (𝐿:ℤ–onto→𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→𝐵)) | |
27 | 25, 26 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐿:ℤ–onto→𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→𝐵)) |
28 | 23, 27 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3618 ↦ cmpt 4090 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 [cec 6585 / cqs 6586 ℕ0cn0 9240 ℤcz 9317 Basecbs 12618 /s cqus 12883 ~QG cqg 13239 Ringcrg 13492 RSpancrsp 13964 ℤringczring 14078 ℤRHomczrh 14099 ℤ/nℤczn 14101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-recs 6358 df-frec 6444 df-er 6587 df-ec 6589 df-qs 6593 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-cj 10986 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-starv 12710 df-sca 12711 df-vsca 12712 df-ip 12713 df-ple 12715 df-0g 12869 df-iimas 12885 df-qus 12886 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mhm 13031 df-grp 13075 df-minusg 13076 df-sbg 13077 df-mulg 13190 df-subg 13240 df-nsg 13241 df-eqg 13242 df-ghm 13311 df-cmn 13356 df-abl 13357 df-mgp 13417 df-rng 13429 df-ur 13456 df-srg 13460 df-ring 13494 df-cring 13495 df-oppr 13564 df-rhm 13648 df-subrg 13715 df-lmod 13785 df-lssm 13849 df-lsp 13883 df-sra 13931 df-rgmod 13932 df-lidl 13965 df-rsp 13966 df-2idl 13996 df-icnfld 14048 df-zring 14079 df-zrh 14102 df-zn 14104 |
This theorem is referenced by: znf1o 14139 znidom 14145 znunit 14147 znrrg 14148 |
Copyright terms: Public domain | W3C validator |