| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znzrhval | GIF version | ||
| Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znzrh2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znzrh2.r | ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) |
| znzrh2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znzrh2.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| Ref | Expression |
|---|---|
| znzrhval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | . . . . 5 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znzrh2.r | . . . . 5 ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) | |
| 3 | znzrh2.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znzrh2.2 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 5 | 1, 2, 3, 4 | znzrh2 14280 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| 6 | 5 | fveq1d 5563 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 7 | 6 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 8 | eqid 2196 | . . 3 ⊢ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) | |
| 9 | eceq1 6636 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 10 | simpr 110 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 11 | zringring 14227 | . . . . . 6 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14108 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2269 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4218 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | 15 | adantr 276 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → {𝑁} ∈ V) |
| 17 | fvexg 5580 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 18 | 14, 16, 17 | sylancr 414 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑆‘{𝑁}) ∈ V) |
| 19 | eqgex 13429 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 20 | 11, 18, 19 | sylancr 414 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 21 | 2, 20 | eqeltrid 2283 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ∼ ∈ V) |
| 22 | ecexg 6605 | . . . 4 ⊢ ( ∼ ∈ V → [𝐴] ∼ ∈ V) | |
| 23 | 21, 22 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → [𝐴] ∼ ∈ V) |
| 24 | 8, 9, 10, 23 | fvmptd3 5658 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴) = [𝐴] ∼ ) |
| 25 | 7, 24 | eqtrd 2229 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5925 [cec 6599 ℕ0cn0 9268 ℤcz 9345 ~QG cqg 13377 Ringcrg 13630 RSpancrsp 14102 ℤringczring 14224 ℤRHomczrh 14245 ℤ/nℤczn 14247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-recs 6372 df-frec 6458 df-er 6601 df-ec 6603 df-qs 6607 df-map 6718 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-dec 9477 df-uz 9621 df-rp 9748 df-fz 10103 df-fzo 10237 df-seqfrec 10559 df-cj 11026 df-abs 11183 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-starv 12797 df-sca 12798 df-vsca 12799 df-ip 12800 df-tset 12801 df-ple 12802 df-ds 12804 df-unif 12805 df-0g 12962 df-topgen 12964 df-iimas 13006 df-qus 13007 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-mhm 13163 df-grp 13207 df-minusg 13208 df-sbg 13209 df-mulg 13328 df-subg 13378 df-nsg 13379 df-eqg 13380 df-ghm 13449 df-cmn 13494 df-abl 13495 df-mgp 13555 df-rng 13567 df-ur 13594 df-srg 13598 df-ring 13632 df-cring 13633 df-oppr 13702 df-rhm 13786 df-subrg 13853 df-lmod 13923 df-lssm 13987 df-lsp 14021 df-sra 14069 df-rgmod 14070 df-lidl 14103 df-rsp 14104 df-2idl 14134 df-bl 14180 df-mopn 14181 df-fg 14183 df-metu 14184 df-cnfld 14191 df-zring 14225 df-zrh 14248 df-zn 14250 |
| This theorem is referenced by: zndvds 14283 |
| Copyright terms: Public domain | W3C validator |