| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znzrhval | GIF version | ||
| Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znzrh2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znzrh2.r | ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) |
| znzrh2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znzrh2.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| Ref | Expression |
|---|---|
| znzrhval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | . . . . 5 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znzrh2.r | . . . . 5 ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) | |
| 3 | znzrh2.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znzrh2.2 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 5 | 1, 2, 3, 4 | znzrh2 14452 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| 6 | 5 | fveq1d 5585 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 7 | 6 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 8 | eqid 2206 | . . 3 ⊢ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) | |
| 9 | eceq1 6662 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 10 | simpr 110 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 11 | zringring 14399 | . . . . . 6 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14280 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2279 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4232 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | 15 | adantr 276 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → {𝑁} ∈ V) |
| 17 | fvexg 5602 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 18 | 14, 16, 17 | sylancr 414 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑆‘{𝑁}) ∈ V) |
| 19 | eqgex 13601 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 20 | 11, 18, 19 | sylancr 414 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 21 | 2, 20 | eqeltrid 2293 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ∼ ∈ V) |
| 22 | ecexg 6631 | . . . 4 ⊢ ( ∼ ∈ V → [𝐴] ∼ ∈ V) | |
| 23 | 21, 22 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → [𝐴] ∼ ∈ V) |
| 24 | 8, 9, 10, 23 | fvmptd3 5680 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴) = [𝐴] ∼ ) |
| 25 | 7, 24 | eqtrd 2239 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3634 ↦ cmpt 4109 ‘cfv 5276 (class class class)co 5951 [cec 6625 ℕ0cn0 9302 ℤcz 9379 ~QG cqg 13549 Ringcrg 13802 RSpancrsp 14274 ℤringczring 14396 ℤRHomczrh 14417 ℤ/nℤczn 14419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-recs 6398 df-frec 6484 df-er 6627 df-ec 6629 df-qs 6633 df-map 6744 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-cj 11197 df-abs 11354 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-starv 12968 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-unif 12976 df-0g 13134 df-topgen 13136 df-iimas 13178 df-qus 13179 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mhm 13335 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mulg 13500 df-subg 13550 df-nsg 13551 df-eqg 13552 df-ghm 13621 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-srg 13770 df-ring 13804 df-cring 13805 df-oppr 13874 df-rhm 13958 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-lsp 14193 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-rsp 14276 df-2idl 14306 df-bl 14352 df-mopn 14353 df-fg 14355 df-metu 14356 df-cnfld 14363 df-zring 14397 df-zrh 14420 df-zn 14422 |
| This theorem is referenced by: zndvds 14455 |
| Copyright terms: Public domain | W3C validator |