| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znzrhval | GIF version | ||
| Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znzrh2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znzrh2.r | ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) |
| znzrh2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znzrh2.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| Ref | Expression |
|---|---|
| znzrhval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | . . . . 5 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znzrh2.r | . . . . 5 ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) | |
| 3 | znzrh2.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znzrh2.2 | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 5 | 1, 2, 3, 4 | znzrh2 14575 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) |
| 6 | 5 | fveq1d 5605 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 7 | 6 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴)) |
| 8 | eqid 2209 | . . 3 ⊢ (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) = (𝑥 ∈ ℤ ↦ [𝑥] ∼ ) | |
| 9 | eceq1 6685 | . . 3 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 10 | simpr 110 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 11 | zringring 14522 | . . . . . 6 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14403 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2282 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4247 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | 15 | adantr 276 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → {𝑁} ∈ V) |
| 17 | fvexg 5622 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 18 | 14, 16, 17 | sylancr 414 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑆‘{𝑁}) ∈ V) |
| 19 | eqgex 13724 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 20 | 11, 18, 19 | sylancr 414 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 21 | 2, 20 | eqeltrid 2296 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ∼ ∈ V) |
| 22 | ecexg 6654 | . . . 4 ⊢ ( ∼ ∈ V → [𝐴] ∼ ∈ V) | |
| 23 | 21, 22 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → [𝐴] ∼ ∈ V) |
| 24 | 8, 9, 10, 23 | fvmptd3 5701 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ [𝑥] ∼ )‘𝐴) = [𝐴] ∼ ) |
| 25 | 7, 24 | eqtrd 2242 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 {csn 3646 ↦ cmpt 4124 ‘cfv 5294 (class class class)co 5974 [cec 6648 ℕ0cn0 9337 ℤcz 9414 ~QG cqg 13672 Ringcrg 13925 RSpancrsp 14397 ℤringczring 14519 ℤRHomczrh 14540 ℤ/nℤczn 14542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-recs 6421 df-frec 6507 df-er 6650 df-ec 6652 df-qs 6656 df-map 6767 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-cj 11319 df-abs 11476 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-starv 13091 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-unif 13099 df-0g 13257 df-topgen 13259 df-iimas 13301 df-qus 13302 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-mhm 13458 df-grp 13502 df-minusg 13503 df-sbg 13504 df-mulg 13623 df-subg 13673 df-nsg 13674 df-eqg 13675 df-ghm 13744 df-cmn 13789 df-abl 13790 df-mgp 13850 df-rng 13862 df-ur 13889 df-srg 13893 df-ring 13927 df-cring 13928 df-oppr 13997 df-rhm 14081 df-subrg 14148 df-lmod 14218 df-lssm 14282 df-lsp 14316 df-sra 14364 df-rgmod 14365 df-lidl 14398 df-rsp 14399 df-2idl 14429 df-bl 14475 df-mopn 14476 df-fg 14478 df-metu 14479 df-cnfld 14486 df-zring 14520 df-zrh 14543 df-zn 14545 |
| This theorem is referenced by: zndvds 14578 |
| Copyright terms: Public domain | W3C validator |