![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mopntopon | GIF version |
Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopntopon | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | mopnval 14082 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
3 | blbas 14073 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) | |
4 | tgtopon 13706 | . . . 4 ⊢ (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) |
6 | unirnbl 14063 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
7 | 6 | fveq2d 5521 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘∪ ran (ball‘𝐷)) = (TopOn‘𝑋)) |
8 | 5, 7 | eleqtrd 2256 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋)) |
9 | 2, 8 | eqeltrd 2254 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∪ cuni 3811 ran crn 4629 ‘cfv 5218 topGenctg 12709 ∞Metcxmet 13580 ballcbl 13582 MetOpencmopn 13585 TopOnctopon 13650 TopBasesctb 13682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-map 6653 df-sup 6986 df-inf 6987 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-xneg 9775 df-xadd 9776 df-seqfrec 10449 df-exp 10523 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-topgen 12715 df-psmet 13587 df-xmet 13588 df-bl 13590 df-mopn 13591 df-top 13638 df-topon 13651 df-bases 13683 |
This theorem is referenced by: mopntop 14084 mopnuni 14085 mopnm 14088 mopnss 14090 isxms2 14092 xmettx 14150 metcnp3 14151 metcn 14154 metcnpi 14155 metcnpi2 14156 metcnpi3 14157 txmetcn 14159 cntoptopon 14172 |
Copyright terms: Public domain | W3C validator |