MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arithlem2 Structured version   Visualization version   GIF version

Theorem 1arithlem2 16828
Description: Lemma for 1arith 16831. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
1arithlem2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀𝑁)‘𝑃) = (𝑃 pCnt 𝑁))
Distinct variable groups:   𝑛,𝑝,𝑁   𝑃,𝑝
Allowed substitution hints:   𝑃(𝑛)   𝑀(𝑛,𝑝)

Proof of Theorem 1arithlem2
StepHypRef Expression
1 1arith.1 . . . 4 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
211arithlem1 16827 . . 3 (𝑁 ∈ ℕ → (𝑀𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)))
32fveq1d 6819 . 2 (𝑁 ∈ ℕ → ((𝑀𝑁)‘𝑃) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))‘𝑃))
4 oveq1 7348 . . 3 (𝑝 = 𝑃 → (𝑝 pCnt 𝑁) = (𝑃 pCnt 𝑁))
5 eqid 2730 . . 3 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))
6 ovex 7374 . . 3 (𝑃 pCnt 𝑁) ∈ V
74, 5, 6fvmpt 6924 . 2 (𝑃 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))‘𝑃) = (𝑃 pCnt 𝑁))
83, 7sylan9eq 2785 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀𝑁)‘𝑃) = (𝑃 pCnt 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cmpt 5170  cfv 6477  (class class class)co 7341  cn 12117  cprime 16574   pCnt cpc 16740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-1cn 11056  ax-addcl 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-nn 12118  df-prm 16575
This theorem is referenced by:  1arithlem4  16830  1arith  16831
  Copyright terms: Public domain W3C validator