MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Visualization version   GIF version

Theorem 1arith 16898
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16647 . . . . . 6 ℙ ∈ V
21mptex 7197 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
3 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
42, 3fnmpti 6661 . . . 4 𝑀 Fn ℕ
531arithlem3 16896 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
6 nn0ex 12448 . . . . . . . 8 0 ∈ V
76, 1elmap 8844 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0m ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
85, 7sylibr 234 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0m ℙ))
9 fzfi 13937 . . . . . . 7 (1...𝑥) ∈ Fin
10 ffn 6688 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
11 elpreima 7030 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
125, 10, 113syl 18 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1331arithlem2 16895 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1413eleq1d 2813 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
15 prmz 16645 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
16 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
17 dvdsle 16280 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
1815, 16, 17syl2anr 597 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
19 pcelnn 16841 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2019ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
21 prmnn 16644 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
22 nnuz 12836 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2838 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
24 nnz 12550 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
25 elfz5 13477 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2623, 24, 25syl2anr 597 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2718, 20, 263imtr4d 294 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2814, 27sylbid 240 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2928expimpd 453 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3012, 29sylbid 240 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3130ssrdv 3952 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
32 ssfi 9137 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
339, 31, 32sylancr 587 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
34 cnveq 5837 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
3534imaeq1d 6030 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
3635eleq1d 2813 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
37 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
3836, 37elrab2 3662 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0m ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
398, 33, 38sylanbrc 583 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
4039rgen 3046 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
41 ffnfv 7091 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
424, 40, 41mpbir2an 711 . . 3 𝑀:ℕ⟶𝑅
4313adantlr 715 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
4431arithlem2 16895 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4544adantll 714 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4643, 45eqeq12d 2745 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4746ralbidva 3154 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4831arithlem3 16896 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
49 ffn 6688 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
50 eqfnfv 7003 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
5110, 49, 50syl2an 596 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
525, 48, 51syl2an 596 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
53 nnnn0 12449 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
54 nnnn0 12449 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
55 pc11 16851 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5653, 54, 55syl2an 596 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5747, 52, 563bitr4d 311 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
5857biimpd 229 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
5958rgen2 3177 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
60 dff13 7229 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
6142, 59, 60mpbir2an 711 . 2 𝑀:ℕ–1-1𝑅
62 eqid 2729 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
63 cnveq 5837 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
6463imaeq1d 6030 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
6564eleq1d 2813 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
6665, 37elrab2 3662 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0m ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
6766simplbi 497 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0m ℙ))
686, 1elmap 8844 . . . . . . . 8 (𝑓 ∈ (ℕ0m ℙ) ↔ 𝑓:ℙ⟶ℕ0)
6967, 68sylib 218 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
7069ad2antrr 726 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
71 simplr 768 . . . . . . . . 9 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℝ)
72 0re 11176 . . . . . . . . 9 0 ∈ ℝ
73 ifcl 4534 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
7471, 72, 73sylancl 586 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
75 max1 13145 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
7672, 71, 75sylancr 587 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
77 flge0nn0 13782 . . . . . . . 8 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
7874, 76, 77syl2anc 584 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
79 nn0p1nn 12481 . . . . . . 7 ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0 → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8078, 79syl 17 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8171adantr 480 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
8280adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8382nnred 12201 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℝ)
8415ssriv 3950 . . . . . . . . . . . 12 ℙ ⊆ ℤ
85 zssre 12536 . . . . . . . . . . . 12 ℤ ⊆ ℝ
8684, 85sstri 3956 . . . . . . . . . . 11 ℙ ⊆ ℝ
87 simprl 770 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
8886, 87sselid 3944 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
8974adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
90 max2 13147 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
9172, 81, 90sylancr 587 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
92 flltp1 13762 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9389, 92syl 17 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9481, 89, 83, 91, 93lelttrd 11332 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
95 simprr 772 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)
9681, 83, 88, 94, 95ltletrd 11334 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
9781, 88ltnled 11321 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
9896, 97mpbid 232 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
9987biantrurd 532 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10070adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
101 ffn 6688 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
102 elpreima 7030 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
103100, 101, 1023syl 18 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10499, 103bitr4d 282 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
105 simplr 768 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
106 breq1 5110 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
107106rspccv 3585 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
108105, 107syl 17 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
109104, 108sylbid 240 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
11098, 109mtod 198 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
111100, 87ffvelcdmd 7057 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
112 elnn0 12444 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
113111, 112sylib 218 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
114113ord 864 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
115110, 114mpd 15 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1163, 62, 70, 80, 1151arithlem4 16897 . . . . 5 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
117 cnvimass 6053 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
11869fdmd 6698 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
119118, 86eqsstrdi 3991 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℝ)
120117, 119sstrid 3958 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℝ)
12166simprbi 496 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
122 fimaxre2 12128 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℝ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
123120, 121, 122syl2anc 584 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
124116, 123r19.29a 3141 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
125124rgen 3046 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
126 dffo3 7074 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
12742, 125, 126mpbir2an 711 . 2 𝑀:ℕ–onto𝑅
128 df-f1o 6518 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
12961, 127, 128mpbir2an 711 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cfl 13752  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  1arith2  16899  sqff1o  27092
  Copyright terms: Public domain W3C validator