MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Visualization version   GIF version

Theorem 1arith 16255
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16013 . . . . . 6 ℙ ∈ V
21mptex 6978 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
3 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
42, 3fnmpti 6484 . . . 4 𝑀 Fn ℕ
531arithlem3 16253 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
6 nn0ex 11895 . . . . . . . 8 0 ∈ V
76, 1elmap 8427 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0m ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
85, 7sylibr 236 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0m ℙ))
9 fzfi 13332 . . . . . . 7 (1...𝑥) ∈ Fin
10 ffn 6507 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
11 elpreima 6821 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
125, 10, 113syl 18 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1331arithlem2 16252 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1413eleq1d 2895 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
15 prmz 16011 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
16 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
17 dvdsle 15652 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
1815, 16, 17syl2anr 598 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
19 pcelnn 16198 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2019ancoms 461 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
21 prmnn 16010 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
22 nnuz 12273 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2921 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
24 nnz 11996 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
25 elfz5 12892 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2623, 24, 25syl2anr 598 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2718, 20, 263imtr4d 296 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2814, 27sylbid 242 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2928expimpd 456 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3012, 29sylbid 242 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3130ssrdv 3971 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
32 ssfi 8730 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
339, 31, 32sylancr 589 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
34 cnveq 5737 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
3534imaeq1d 5921 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
3635eleq1d 2895 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
37 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
3836, 37elrab2 3681 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0m ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
398, 33, 38sylanbrc 585 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
4039rgen 3146 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
41 ffnfv 6875 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
424, 40, 41mpbir2an 709 . . 3 𝑀:ℕ⟶𝑅
4313adantlr 713 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
4431arithlem2 16252 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4544adantll 712 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4643, 45eqeq12d 2835 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4746ralbidva 3194 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4831arithlem3 16253 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
49 ffn 6507 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
50 eqfnfv 6795 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
5110, 49, 50syl2an 597 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
525, 48, 51syl2an 597 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
53 nnnn0 11896 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
54 nnnn0 11896 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
55 pc11 16208 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5653, 54, 55syl2an 597 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5747, 52, 563bitr4d 313 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
5857biimpd 231 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
5958rgen2 3201 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
60 dff13 7005 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
6142, 59, 60mpbir2an 709 . 2 𝑀:ℕ–1-1𝑅
62 eqid 2819 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
63 cnveq 5737 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
6463imaeq1d 5921 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
6564eleq1d 2895 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
6665, 37elrab2 3681 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0m ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
6766simplbi 500 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0m ℙ))
686, 1elmap 8427 . . . . . . . 8 (𝑓 ∈ (ℕ0m ℙ) ↔ 𝑓:ℙ⟶ℕ0)
6967, 68sylib 220 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
7069ad2antrr 724 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
71 simplr 767 . . . . . . . . 9 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℝ)
72 0re 10635 . . . . . . . . 9 0 ∈ ℝ
73 ifcl 4509 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
7471, 72, 73sylancl 588 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
75 max1 12570 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
7672, 71, 75sylancr 589 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
77 flge0nn0 13182 . . . . . . . 8 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
7874, 76, 77syl2anc 586 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
79 nn0p1nn 11928 . . . . . . 7 ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0 → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8078, 79syl 17 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8171adantr 483 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
8280adantr 483 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8382nnred 11645 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℝ)
8415ssriv 3969 . . . . . . . . . . . 12 ℙ ⊆ ℤ
85 zssre 11980 . . . . . . . . . . . 12 ℤ ⊆ ℝ
8684, 85sstri 3974 . . . . . . . . . . 11 ℙ ⊆ ℝ
87 simprl 769 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
8886, 87sseldi 3963 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
8974adantr 483 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
90 max2 12572 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
9172, 81, 90sylancr 589 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
92 flltp1 13162 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9389, 92syl 17 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9481, 89, 83, 91, 93lelttrd 10790 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
95 simprr 771 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)
9681, 83, 88, 94, 95ltletrd 10792 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
9781, 88ltnled 10779 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
9896, 97mpbid 234 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
9987biantrurd 535 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10070adantr 483 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
101 ffn 6507 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
102 elpreima 6821 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
103100, 101, 1023syl 18 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10499, 103bitr4d 284 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
105 simplr 767 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
106 breq1 5060 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
107106rspccv 3618 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
108105, 107syl 17 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
109104, 108sylbid 242 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
11098, 109mtod 200 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
111100, 87ffvelrnd 6845 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
112 elnn0 11891 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
113111, 112sylib 220 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
114113ord 860 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
115110, 114mpd 15 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1163, 62, 70, 80, 1151arithlem4 16254 . . . . 5 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
117 cnvimass 5942 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
11869fdmd 6516 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
119118, 86eqsstrdi 4019 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℝ)
120117, 119sstrid 3976 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℝ)
12166simprbi 499 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
122 fimaxre2 11578 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℝ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
123120, 121, 122syl2anc 586 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
124116, 123r19.29a 3287 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
125124rgen 3146 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
126 dffo3 6861 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
12742, 125, 126mpbir2an 709 . 2 𝑀:ℕ–onto𝑅
128 df-f1o 6355 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
12961, 127, 128mpbir2an 709 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1531  wcel 2108  wral 3136  wrex 3137  {crab 3140  wss 3934  ifcif 4465   class class class wbr 5057  cmpt 5137  ccnv 5547  dom cdm 5548  cima 5551   Fn wfn 6343  wf 6344  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  m cmap 8398  Fincfn 8501  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cn 11630  0cn0 11889  cz 11973  cuz 12235  ...cfz 12884  cfl 13152  cexp 13421  cdvds 15599  cprime 16007   pCnt cpc 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166
This theorem is referenced by:  1arith2  16256  sqff1o  25751
  Copyright terms: Public domain W3C validator