MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Visualization version   GIF version

Theorem 1arith 16556
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16310 . . . . . 6 ℙ ∈ V
21mptex 7081 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
3 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
42, 3fnmpti 6560 . . . 4 𝑀 Fn ℕ
531arithlem3 16554 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
6 nn0ex 12169 . . . . . . . 8 0 ∈ V
76, 1elmap 8617 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0m ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
85, 7sylibr 233 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0m ℙ))
9 fzfi 13620 . . . . . . 7 (1...𝑥) ∈ Fin
10 ffn 6584 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
11 elpreima 6917 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
125, 10, 113syl 18 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1331arithlem2 16553 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1413eleq1d 2823 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
15 prmz 16308 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
16 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
17 dvdsle 15947 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
1815, 16, 17syl2anr 596 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
19 pcelnn 16499 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2019ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
21 prmnn 16307 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
22 nnuz 12550 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2849 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
24 nnz 12272 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
25 elfz5 13177 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2623, 24, 25syl2anr 596 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2718, 20, 263imtr4d 293 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2814, 27sylbid 239 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2928expimpd 453 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3012, 29sylbid 239 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3130ssrdv 3923 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
32 ssfi 8918 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
339, 31, 32sylancr 586 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
34 cnveq 5771 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
3534imaeq1d 5957 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
3635eleq1d 2823 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
37 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0m ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
3836, 37elrab2 3620 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0m ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
398, 33, 38sylanbrc 582 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
4039rgen 3073 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
41 ffnfv 6974 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
424, 40, 41mpbir2an 707 . . 3 𝑀:ℕ⟶𝑅
4313adantlr 711 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
4431arithlem2 16553 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4544adantll 710 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4643, 45eqeq12d 2754 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4746ralbidva 3119 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4831arithlem3 16554 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
49 ffn 6584 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
50 eqfnfv 6891 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
5110, 49, 50syl2an 595 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
525, 48, 51syl2an 595 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
53 nnnn0 12170 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
54 nnnn0 12170 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
55 pc11 16509 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5653, 54, 55syl2an 595 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5747, 52, 563bitr4d 310 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
5857biimpd 228 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
5958rgen2 3126 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
60 dff13 7109 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
6142, 59, 60mpbir2an 707 . 2 𝑀:ℕ–1-1𝑅
62 eqid 2738 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
63 cnveq 5771 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
6463imaeq1d 5957 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
6564eleq1d 2823 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
6665, 37elrab2 3620 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0m ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
6766simplbi 497 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0m ℙ))
686, 1elmap 8617 . . . . . . . 8 (𝑓 ∈ (ℕ0m ℙ) ↔ 𝑓:ℙ⟶ℕ0)
6967, 68sylib 217 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
7069ad2antrr 722 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
71 simplr 765 . . . . . . . . 9 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℝ)
72 0re 10908 . . . . . . . . 9 0 ∈ ℝ
73 ifcl 4501 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
7471, 72, 73sylancl 585 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
75 max1 12848 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
7672, 71, 75sylancr 586 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
77 flge0nn0 13468 . . . . . . . 8 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
7874, 76, 77syl2anc 583 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
79 nn0p1nn 12202 . . . . . . 7 ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0 → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8078, 79syl 17 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8171adantr 480 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
8280adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8382nnred 11918 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℝ)
8415ssriv 3921 . . . . . . . . . . . 12 ℙ ⊆ ℤ
85 zssre 12256 . . . . . . . . . . . 12 ℤ ⊆ ℝ
8684, 85sstri 3926 . . . . . . . . . . 11 ℙ ⊆ ℝ
87 simprl 767 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
8886, 87sselid 3915 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
8974adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
90 max2 12850 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
9172, 81, 90sylancr 586 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
92 flltp1 13448 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9389, 92syl 17 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9481, 89, 83, 91, 93lelttrd 11063 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
95 simprr 769 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)
9681, 83, 88, 94, 95ltletrd 11065 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
9781, 88ltnled 11052 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
9896, 97mpbid 231 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
9987biantrurd 532 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10070adantr 480 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
101 ffn 6584 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
102 elpreima 6917 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
103100, 101, 1023syl 18 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10499, 103bitr4d 281 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
105 simplr 765 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
106 breq1 5073 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
107106rspccv 3549 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
108105, 107syl 17 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
109104, 108sylbid 239 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
11098, 109mtod 197 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
111100, 87ffvelrnd 6944 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
112 elnn0 12165 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
113111, 112sylib 217 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
114113ord 860 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
115110, 114mpd 15 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1163, 62, 70, 80, 1151arithlem4 16555 . . . . 5 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
117 cnvimass 5978 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
11869fdmd 6595 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
119118, 86eqsstrdi 3971 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℝ)
120117, 119sstrid 3928 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℝ)
12166simprbi 496 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
122 fimaxre2 11850 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℝ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
123120, 121, 122syl2anc 583 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
124116, 123r19.29a 3217 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
125124rgen 3073 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
126 dffo3 6960 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
12742, 125, 126mpbir2an 707 . 2 𝑀:ℕ–onto𝑅
128 df-f1o 6425 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
12961, 127, 128mpbir2an 707 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cfl 13438  cexp 13710  cdvds 15891  cprime 16304   pCnt cpc 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  1arith2  16557  sqff1o  26236
  Copyright terms: Public domain W3C validator