![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arithlem1 | Structured version Visualization version GIF version |
Description: Lemma for 1arith 16859. (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
Ref | Expression |
---|---|
1arithlem1 | ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7409 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑝 pCnt 𝑛) = (𝑝 pCnt 𝑁)) | |
2 | 1 | mpteq2dv 5240 | . 2 ⊢ (𝑛 = 𝑁 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))) |
3 | 1arith.1 | . 2 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
4 | prmex 16611 | . . 3 ⊢ ℙ ∈ V | |
5 | 4 | mptex 7216 | . 2 ⊢ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)) ∈ V |
6 | 2, 3, 5 | fvmpt 6988 | 1 ⊢ (𝑁 ∈ ℕ → (𝑀‘𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 ℕcn 12209 ℙcprime 16605 pCnt cpc 16768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-nn 12210 df-prm 16606 |
This theorem is referenced by: 1arithlem2 16856 1arithlem3 16857 sqff1o 27030 |
Copyright terms: Public domain | W3C validator |