| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2atneat | Structured version Visualization version GIF version | ||
| Description: The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.) |
| Ref | Expression |
|---|---|
| 2atneat.j | ⊢ ∨ = (join‘𝐾) |
| 2atneat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 2atneat | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝐾 ∈ HL) | |
| 2 | simpr1 1191 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ 𝐴) | |
| 3 | simpr2 1192 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ 𝐴) | |
| 4 | simpr3 1193 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ≠ 𝑄) | |
| 5 | 2atneat.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 6 | 2atneat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2729 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
| 8 | 5, 6, 7 | llni2 39278 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
| 9 | 1, 2, 3, 4, 8 | syl31anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
| 10 | 6, 7 | llnneat 39280 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) |
| 11 | 9, 10 | syldan 589 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2100 ≠ wne 2933 ‘cfv 6558 (class class class)co 7430 joincjn 18357 Atomscatm 39028 HLchlt 39115 LLinesclln 39257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5293 ax-sep 5307 ax-nul 5314 ax-pow 5373 ax-pr 5437 ax-un 7751 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-ral 3055 df-rex 3064 df-rmo 3373 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3789 df-csb 3905 df-dif 3962 df-un 3964 df-in 3966 df-ss 3976 df-nul 4336 df-if 4537 df-pw 4612 df-sn 4637 df-pr 4639 df-op 4643 df-uni 4919 df-iun 5008 df-br 5157 df-opab 5219 df-mpt 5240 df-id 5584 df-xp 5692 df-rel 5693 df-cnv 5694 df-co 5695 df-dm 5696 df-rn 5697 df-res 5698 df-ima 5699 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7386 df-ov 7433 df-oprab 7434 df-proset 18341 df-poset 18359 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-clat 18545 df-oposet 38941 df-ol 38943 df-oml 38944 df-covers 39031 df-ats 39032 df-atl 39063 df-cvlat 39087 df-hlat 39116 df-llines 39264 |
| This theorem is referenced by: cdleme18b 40058 |
| Copyright terms: Public domain | W3C validator |