Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atneat Structured version   Visualization version   GIF version

Theorem 2atneat 39281
Description: The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.)
Hypotheses
Ref Expression
2atneat.j = (join‘𝐾)
2atneat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atneat ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ¬ (𝑃 𝑄) ∈ 𝐴)

Proof of Theorem 2atneat
StepHypRef Expression
1 simpl 481 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝐾 ∈ HL)
2 simpr1 1191 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
3 simpr2 1192 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
4 simpr3 1193 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
5 2atneat.j . . . 4 = (join‘𝐾)
6 2atneat.a . . . 4 𝐴 = (Atoms‘𝐾)
7 eqid 2729 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
85, 6, 7llni2 39278 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
91, 2, 3, 4, 8syl31anc 1370 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝑃 𝑄) ∈ (LLines‘𝐾))
106, 7llnneat 39280 . 2 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾)) → ¬ (𝑃 𝑄) ∈ 𝐴)
119, 10syldan 589 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ¬ (𝑃 𝑄) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2100  wne 2933  cfv 6558  (class class class)co 7430  joincjn 18357  Atomscatm 39028  HLchlt 39115  LLinesclln 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-10 2133  ax-11 2150  ax-12 2170  ax-ext 2700  ax-rep 5293  ax-sep 5307  ax-nul 5314  ax-pow 5373  ax-pr 5437  ax-un 7751
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2062  df-mo 2532  df-eu 2561  df-clab 2707  df-cleq 2721  df-clel 2806  df-nfc 2881  df-ne 2934  df-ral 3055  df-rex 3064  df-rmo 3373  df-reu 3374  df-rab 3429  df-v 3474  df-sbc 3789  df-csb 3905  df-dif 3962  df-un 3964  df-in 3966  df-ss 3976  df-nul 4336  df-if 4537  df-pw 4612  df-sn 4637  df-pr 4639  df-op 4643  df-uni 4919  df-iun 5008  df-br 5157  df-opab 5219  df-mpt 5240  df-id 5584  df-xp 5692  df-rel 5693  df-cnv 5694  df-co 5695  df-dm 5696  df-rn 5697  df-res 5698  df-ima 5699  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7386  df-ov 7433  df-oprab 7434  df-proset 18341  df-poset 18359  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-lat 18478  df-clat 18545  df-oposet 38941  df-ol 38943  df-oml 38944  df-covers 39031  df-ats 39032  df-atl 39063  df-cvlat 39087  df-hlat 39116  df-llines 39264
This theorem is referenced by:  cdleme18b  40058
  Copyright terms: Public domain W3C validator