Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnn0 Structured version   Visualization version   GIF version

Theorem llnn0 39498
Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
llnn0.z 0 = (0.‘𝐾)
llnn0.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnn0 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )

Proof of Theorem llnn0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
21atex 39388 . . . 4 (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅)
3 n0 4306 . . . 4 ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
42, 3sylib 218 . . 3 (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
54adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
6 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 llnn0.n . . . . 5 𝑁 = (LLines‘𝐾)
86, 1, 7llnnleat 39495 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
983expa 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
10 hlop 39343 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1110ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
12 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 1atbase 39270 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1413adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾))
15 llnn0.z . . . . . . 7 0 = (0.‘𝐾)
1612, 6, 15op0le 39167 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝)
1711, 14, 16syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝)
18 breq1 5098 . . . . 5 (𝑋 = 0 → (𝑋(le‘𝐾)𝑝0 (le‘𝐾)𝑝))
1917, 18syl5ibrcom 247 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0𝑋(le‘𝐾)𝑝))
2019necon3bd 2939 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝𝑋0 ))
219, 20mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋0 )
225, 21exlimddv 1935 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4286   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  0.cp0 18345  OPcops 39153  Atomscatm 39244  HLchlt 39331  LLinesclln 39473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480
This theorem is referenced by:  2llnm3N  39551  cdleme22b  40323
  Copyright terms: Public domain W3C validator