Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnn0 Structured version   Visualization version   GIF version

Theorem llnn0 36722
Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
llnn0.z 0 = (0.‘𝐾)
llnn0.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnn0 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )

Proof of Theorem llnn0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
21atex 36612 . . . 4 (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅)
3 n0 4292 . . . 4 ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
42, 3sylib 221 . . 3 (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
54adantr 484 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
6 eqid 2824 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 llnn0.n . . . . 5 𝑁 = (LLines‘𝐾)
86, 1, 7llnnleat 36719 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
983expa 1115 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
10 hlop 36568 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1110ad2antrr 725 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
12 eqid 2824 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 1atbase 36495 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1413adantl 485 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾))
15 llnn0.z . . . . . . 7 0 = (0.‘𝐾)
1612, 6, 15op0le 36392 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝)
1711, 14, 16syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝)
18 breq1 5055 . . . . 5 (𝑋 = 0 → (𝑋(le‘𝐾)𝑝0 (le‘𝐾)𝑝))
1917, 18syl5ibrcom 250 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0𝑋(le‘𝐾)𝑝))
2019necon3bd 3028 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝𝑋0 ))
219, 20mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋0 )
225, 21exlimddv 1937 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  c0 4275   class class class wbr 5052  cfv 6343  Basecbs 16479  lecple 16568  0.cp0 17643  OPcops 36378  Atomscatm 36469  HLchlt 36556  LLinesclln 36697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36382  df-ol 36384  df-oml 36385  df-covers 36472  df-ats 36473  df-atl 36504  df-cvlat 36528  df-hlat 36557  df-llines 36704
This theorem is referenced by:  2llnm3N  36775  cdleme22b  37547
  Copyright terms: Public domain W3C validator