![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnn0 | Structured version Visualization version GIF version |
Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
llnn0.z | ⊢ 0 = (0.‘𝐾) |
llnn0.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnn0 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | 1 | atex 39389 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
3 | n0 4359 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
6 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | llnn0.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 6, 1, 7 | llnnleat 39496 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
9 | 8 | 3expa 1117 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
10 | hlop 39344 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
12 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 12, 1 | atbase 39271 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
15 | llnn0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
16 | 12, 6, 15 | op0le 39168 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
17 | 11, 14, 16 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
18 | breq1 5151 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
19 | 17, 18 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
20 | 19 | necon3bd 2952 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
22 | 5, 21 | exlimddv 1933 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 0.cp0 18481 OPcops 39154 Atomscatm 39245 HLchlt 39332 LLinesclln 39474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 |
This theorem is referenced by: 2llnm3N 39552 cdleme22b 40324 |
Copyright terms: Public domain | W3C validator |