Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnn0 Structured version   Visualization version   GIF version

Theorem llnn0 36722
 Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
llnn0.z 0 = (0.‘𝐾)
llnn0.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnn0 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )

Proof of Theorem llnn0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
21atex 36612 . . . 4 (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅)
3 n0 4292 . . . 4 ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
42, 3sylib 221 . . 3 (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
54adantr 484 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
6 eqid 2824 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 llnn0.n . . . . 5 𝑁 = (LLines‘𝐾)
86, 1, 7llnnleat 36719 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
983expa 1115 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
10 hlop 36568 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1110ad2antrr 725 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
12 eqid 2824 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 1atbase 36495 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1413adantl 485 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾))
15 llnn0.z . . . . . . 7 0 = (0.‘𝐾)
1612, 6, 15op0le 36392 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝)
1711, 14, 16syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝)
18 breq1 5055 . . . . 5 (𝑋 = 0 → (𝑋(le‘𝐾)𝑝0 (le‘𝐾)𝑝))
1917, 18syl5ibrcom 250 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0𝑋(le‘𝐾)𝑝))
2019necon3bd 3028 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝𝑋0 ))
219, 20mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋0 )
225, 21exlimddv 1937 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ≠ wne 3014  ∅c0 4275   class class class wbr 5052  ‘cfv 6343  Basecbs 16479  lecple 16568  0.cp0 17643  OPcops 36378  Atomscatm 36469  HLchlt 36556  LLinesclln 36697 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36382  df-ol 36384  df-oml 36385  df-covers 36472  df-ats 36473  df-atl 36504  df-cvlat 36528  df-hlat 36557  df-llines 36704 This theorem is referenced by:  2llnm3N  36775  cdleme22b  37547
 Copyright terms: Public domain W3C validator