| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llni2 | Structured version Visualization version GIF version | ||
| Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
| Ref | Expression |
|---|---|
| llni2.j | ⊢ ∨ = (join‘𝐾) |
| llni2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| llni2.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llni2 | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
| 2 | simpl3 1194 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 4 | eqidd 2736 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)) | |
| 5 | neeq1 2994 | . . . . 5 ⊢ (𝑟 = 𝑃 → (𝑟 ≠ 𝑠 ↔ 𝑃 ≠ 𝑠)) | |
| 6 | oveq1 7412 | . . . . . 6 ⊢ (𝑟 = 𝑃 → (𝑟 ∨ 𝑠) = (𝑃 ∨ 𝑠)) | |
| 7 | 6 | eqeq2d 2746 | . . . . 5 ⊢ (𝑟 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠))) |
| 8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑟 = 𝑃 → ((𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)))) |
| 9 | neeq2 2995 | . . . . 5 ⊢ (𝑠 = 𝑄 → (𝑃 ≠ 𝑠 ↔ 𝑃 ≠ 𝑄)) | |
| 10 | oveq2 7413 | . . . . . 6 ⊢ (𝑠 = 𝑄 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑄)) | |
| 11 | 10 | eqeq2d 2746 | . . . . 5 ⊢ (𝑠 = 𝑄 → ((𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) |
| 12 | 9, 11 | anbi12d 632 | . . . 4 ⊢ (𝑠 = 𝑄 → ((𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)))) |
| 13 | 8, 12 | rspc2ev 3614 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
| 14 | 1, 2, 3, 4, 13 | syl112anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
| 15 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
| 16 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 17 | llni2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 18 | llni2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | 16, 17, 18 | hlatjcl 39385 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 21 | llni2.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 22 | 16, 17, 18, 21 | islln3 39529 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
| 23 | 15, 20, 22 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
| 24 | 14, 23 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 joincjn 18323 Atomscatm 39281 HLchlt 39368 LLinesclln 39510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 |
| This theorem is referenced by: 2atneat 39534 islln2a 39536 2at0mat0 39544 ps-2c 39547 lplnnle2at 39560 2atmat 39580 lplnexllnN 39583 dalempjsen 39672 dalemcea 39679 dalem2 39680 dalemdea 39681 dalem16 39698 dalemcjden 39711 dalem23 39715 dalem54 39745 dalem60 39751 llnexchb2 39888 arglem1N 40209 cdlemc5 40214 cdleme20l1 40339 cdleme20l2 40340 cdleme20l 40341 cdleme22b 40360 cdlemeg46req 40548 cdlemh 40836 |
| Copyright terms: Public domain | W3C validator |