![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni2 | Structured version Visualization version GIF version |
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llni2.j | ⊢ ∨ = (join‘𝐾) |
llni2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llni2.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni2 | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1185 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
2 | simpl3 1186 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
3 | simpr 485 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2796 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)) | |
5 | neeq1 3046 | . . . . 5 ⊢ (𝑟 = 𝑃 → (𝑟 ≠ 𝑠 ↔ 𝑃 ≠ 𝑠)) | |
6 | oveq1 7023 | . . . . . 6 ⊢ (𝑟 = 𝑃 → (𝑟 ∨ 𝑠) = (𝑃 ∨ 𝑠)) | |
7 | 6 | eqeq2d 2805 | . . . . 5 ⊢ (𝑟 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠))) |
8 | 5, 7 | anbi12d 630 | . . . 4 ⊢ (𝑟 = 𝑃 → ((𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)))) |
9 | neeq2 3047 | . . . . 5 ⊢ (𝑠 = 𝑄 → (𝑃 ≠ 𝑠 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7024 | . . . . . 6 ⊢ (𝑠 = 𝑄 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑄)) | |
11 | 10 | eqeq2d 2805 | . . . . 5 ⊢ (𝑠 = 𝑄 → ((𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) |
12 | 9, 11 | anbi12d 630 | . . . 4 ⊢ (𝑠 = 𝑄 → ((𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)))) |
13 | 8, 12 | rspc2ev 3574 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1367 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
15 | simpl1 1184 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
16 | eqid 2795 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
17 | llni2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
18 | llni2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 16, 17, 18 | hlatjcl 36034 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 19 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | llni2.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 16, 17, 18, 21 | islln3 36177 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
23 | 15, 20, 22 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
24 | 14, 23 | mpbird 258 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 joincjn 17383 Atomscatm 35930 HLchlt 36017 LLinesclln 36158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-p0 17478 df-lat 17485 df-clat 17547 df-oposet 35843 df-ol 35845 df-oml 35846 df-covers 35933 df-ats 35934 df-atl 35965 df-cvlat 35989 df-hlat 36018 df-llines 36165 |
This theorem is referenced by: 2atneat 36182 islln2a 36184 2at0mat0 36192 ps-2c 36195 lplnnle2at 36208 2atmat 36228 lplnexllnN 36231 dalempjsen 36320 dalemcea 36327 dalem2 36328 dalemdea 36329 dalem16 36346 dalemcjden 36359 dalem23 36363 dalem54 36393 dalem60 36399 llnexchb2 36536 arglem1N 36857 cdlemc5 36862 cdleme20l1 36987 cdleme20l2 36988 cdleme20l 36989 cdleme22b 37008 cdlemeg46req 37196 cdlemh 37484 |
Copyright terms: Public domain | W3C validator |