Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni2 | Structured version Visualization version GIF version |
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llni2.j | ⊢ ∨ = (join‘𝐾) |
llni2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llni2.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni2 | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
2 | simpl3 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
3 | simpr 485 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2739 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)) | |
5 | neeq1 3006 | . . . . 5 ⊢ (𝑟 = 𝑃 → (𝑟 ≠ 𝑠 ↔ 𝑃 ≠ 𝑠)) | |
6 | oveq1 7282 | . . . . . 6 ⊢ (𝑟 = 𝑃 → (𝑟 ∨ 𝑠) = (𝑃 ∨ 𝑠)) | |
7 | 6 | eqeq2d 2749 | . . . . 5 ⊢ (𝑟 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠))) |
8 | 5, 7 | anbi12d 631 | . . . 4 ⊢ (𝑟 = 𝑃 → ((𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)))) |
9 | neeq2 3007 | . . . . 5 ⊢ (𝑠 = 𝑄 → (𝑃 ≠ 𝑠 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7283 | . . . . . 6 ⊢ (𝑠 = 𝑄 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑄)) | |
11 | 10 | eqeq2d 2749 | . . . . 5 ⊢ (𝑠 = 𝑄 → ((𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) |
12 | 9, 11 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝑄 → ((𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)))) |
13 | 8, 12 | rspc2ev 3572 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
15 | simpl1 1190 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
16 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
17 | llni2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
18 | llni2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 16, 17, 18 | hlatjcl 37381 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 19 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | llni2.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 16, 17, 18, 21 | islln3 37524 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
23 | 15, 20, 22 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
24 | 14, 23 | mpbird 256 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 joincjn 18029 Atomscatm 37277 HLchlt 37364 LLinesclln 37505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 |
This theorem is referenced by: 2atneat 37529 islln2a 37531 2at0mat0 37539 ps-2c 37542 lplnnle2at 37555 2atmat 37575 lplnexllnN 37578 dalempjsen 37667 dalemcea 37674 dalem2 37675 dalemdea 37676 dalem16 37693 dalemcjden 37706 dalem23 37710 dalem54 37740 dalem60 37746 llnexchb2 37883 arglem1N 38204 cdlemc5 38209 cdleme20l1 38334 cdleme20l2 38335 cdleme20l 38336 cdleme22b 38355 cdlemeg46req 38543 cdlemh 38831 |
Copyright terms: Public domain | W3C validator |