Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Visualization version   GIF version

Theorem llni2 37453
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j = (join‘𝐾)
llni2.a 𝐴 = (Atoms‘𝐾)
llni2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)

Proof of Theorem llni2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
2 simpl3 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
3 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2739 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) = (𝑃 𝑄))
5 neeq1 3005 . . . . 5 (𝑟 = 𝑃 → (𝑟𝑠𝑃𝑠))
6 oveq1 7262 . . . . . 6 (𝑟 = 𝑃 → (𝑟 𝑠) = (𝑃 𝑠))
76eqeq2d 2749 . . . . 5 (𝑟 = 𝑃 → ((𝑃 𝑄) = (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑠)))
85, 7anbi12d 630 . . . 4 (𝑟 = 𝑃 → ((𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)) ↔ (𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠))))
9 neeq2 3006 . . . . 5 (𝑠 = 𝑄 → (𝑃𝑠𝑃𝑄))
10 oveq2 7263 . . . . . 6 (𝑠 = 𝑄 → (𝑃 𝑠) = (𝑃 𝑄))
1110eqeq2d 2749 . . . . 5 (𝑠 = 𝑄 → ((𝑃 𝑄) = (𝑃 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑄)))
129, 11anbi12d 630 . . . 4 (𝑠 = 𝑄 → ((𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠)) ↔ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))))
138, 12rspc2ev 3564 . . 3 ((𝑃𝐴𝑄𝐴 ∧ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
141, 2, 3, 4, 13syl112anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
15 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
16 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
17 llni2.j . . . . 5 = (join‘𝐾)
18 llni2.a . . . . 5 𝐴 = (Atoms‘𝐾)
1916, 17, 18hlatjcl 37308 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2019adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 llni2.n . . . 4 𝑁 = (LLines‘𝐾)
2216, 17, 18, 21islln3 37451 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2315, 20, 22syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2414, 23mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cfv 6418  (class class class)co 7255  Basecbs 16840  joincjn 17944  Atomscatm 37204  HLchlt 37291  LLinesclln 37432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439
This theorem is referenced by:  2atneat  37456  islln2a  37458  2at0mat0  37466  ps-2c  37469  lplnnle2at  37482  2atmat  37502  lplnexllnN  37505  dalempjsen  37594  dalemcea  37601  dalem2  37602  dalemdea  37603  dalem16  37620  dalemcjden  37633  dalem23  37637  dalem54  37667  dalem60  37673  llnexchb2  37810  arglem1N  38131  cdlemc5  38136  cdleme20l1  38261  cdleme20l2  38262  cdleme20l  38263  cdleme22b  38282  cdlemeg46req  38470  cdlemh  38758
  Copyright terms: Public domain W3C validator