Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Visualization version   GIF version

Theorem llni2 39494
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j = (join‘𝐾)
llni2.a 𝐴 = (Atoms‘𝐾)
llni2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)

Proof of Theorem llni2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
2 simpl3 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
3 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2735 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) = (𝑃 𝑄))
5 neeq1 3000 . . . . 5 (𝑟 = 𝑃 → (𝑟𝑠𝑃𝑠))
6 oveq1 7437 . . . . . 6 (𝑟 = 𝑃 → (𝑟 𝑠) = (𝑃 𝑠))
76eqeq2d 2745 . . . . 5 (𝑟 = 𝑃 → ((𝑃 𝑄) = (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑠)))
85, 7anbi12d 632 . . . 4 (𝑟 = 𝑃 → ((𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)) ↔ (𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠))))
9 neeq2 3001 . . . . 5 (𝑠 = 𝑄 → (𝑃𝑠𝑃𝑄))
10 oveq2 7438 . . . . . 6 (𝑠 = 𝑄 → (𝑃 𝑠) = (𝑃 𝑄))
1110eqeq2d 2745 . . . . 5 (𝑠 = 𝑄 → ((𝑃 𝑄) = (𝑃 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑄)))
129, 11anbi12d 632 . . . 4 (𝑠 = 𝑄 → ((𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠)) ↔ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))))
138, 12rspc2ev 3634 . . 3 ((𝑃𝐴𝑄𝐴 ∧ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
141, 2, 3, 4, 13syl112anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
15 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
16 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
17 llni2.j . . . . 5 = (join‘𝐾)
18 llni2.a . . . . 5 𝐴 = (Atoms‘𝐾)
1916, 17, 18hlatjcl 39348 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2019adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 llni2.n . . . 4 𝑁 = (LLines‘𝐾)
2216, 17, 18, 21islln3 39492 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2315, 20, 22syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2414, 23mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cfv 6562  (class class class)co 7430  Basecbs 17244  joincjn 18368  Atomscatm 39244  HLchlt 39331  LLinesclln 39473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480
This theorem is referenced by:  2atneat  39497  islln2a  39499  2at0mat0  39507  ps-2c  39510  lplnnle2at  39523  2atmat  39543  lplnexllnN  39546  dalempjsen  39635  dalemcea  39642  dalem2  39643  dalemdea  39644  dalem16  39661  dalemcjden  39674  dalem23  39678  dalem54  39708  dalem60  39714  llnexchb2  39851  arglem1N  40172  cdlemc5  40177  cdleme20l1  40302  cdleme20l2  40303  cdleme20l  40304  cdleme22b  40323  cdlemeg46req  40511  cdlemh  40799
  Copyright terms: Public domain W3C validator