Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Visualization version   GIF version

Theorem llni2 36663
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j = (join‘𝐾)
llni2.a 𝐴 = (Atoms‘𝐾)
llni2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)

Proof of Theorem llni2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1188 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
2 simpl3 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
3 simpr 487 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2822 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) = (𝑃 𝑄))
5 neeq1 3078 . . . . 5 (𝑟 = 𝑃 → (𝑟𝑠𝑃𝑠))
6 oveq1 7163 . . . . . 6 (𝑟 = 𝑃 → (𝑟 𝑠) = (𝑃 𝑠))
76eqeq2d 2832 . . . . 5 (𝑟 = 𝑃 → ((𝑃 𝑄) = (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑠)))
85, 7anbi12d 632 . . . 4 (𝑟 = 𝑃 → ((𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)) ↔ (𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠))))
9 neeq2 3079 . . . . 5 (𝑠 = 𝑄 → (𝑃𝑠𝑃𝑄))
10 oveq2 7164 . . . . . 6 (𝑠 = 𝑄 → (𝑃 𝑠) = (𝑃 𝑄))
1110eqeq2d 2832 . . . . 5 (𝑠 = 𝑄 → ((𝑃 𝑄) = (𝑃 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑄)))
129, 11anbi12d 632 . . . 4 (𝑠 = 𝑄 → ((𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠)) ↔ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))))
138, 12rspc2ev 3635 . . 3 ((𝑃𝐴𝑄𝐴 ∧ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
141, 2, 3, 4, 13syl112anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
15 simpl1 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
16 eqid 2821 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
17 llni2.j . . . . 5 = (join‘𝐾)
18 llni2.a . . . . 5 𝐴 = (Atoms‘𝐾)
1916, 17, 18hlatjcl 36518 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2019adantr 483 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 llni2.n . . . 4 𝑁 = (LLines‘𝐾)
2216, 17, 18, 21islln3 36661 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2315, 20, 22syl2anc 586 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2414, 23mpbird 259 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cfv 6355  (class class class)co 7156  Basecbs 16483  joincjn 17554  Atomscatm 36414  HLchlt 36501  LLinesclln 36642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649
This theorem is referenced by:  2atneat  36666  islln2a  36668  2at0mat0  36676  ps-2c  36679  lplnnle2at  36692  2atmat  36712  lplnexllnN  36715  dalempjsen  36804  dalemcea  36811  dalem2  36812  dalemdea  36813  dalem16  36830  dalemcjden  36843  dalem23  36847  dalem54  36877  dalem60  36883  llnexchb2  37020  arglem1N  37341  cdlemc5  37346  cdleme20l1  37471  cdleme20l2  37472  cdleme20l  37473  cdleme22b  37492  cdlemeg46req  37680  cdlemh  37968
  Copyright terms: Public domain W3C validator