Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni2 | Structured version Visualization version GIF version |
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llni2.j | ⊢ ∨ = (join‘𝐾) |
llni2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llni2.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni2 | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
2 | simpl3 1193 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
3 | simpr 486 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2738 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)) | |
5 | neeq1 3004 | . . . . 5 ⊢ (𝑟 = 𝑃 → (𝑟 ≠ 𝑠 ↔ 𝑃 ≠ 𝑠)) | |
6 | oveq1 7353 | . . . . . 6 ⊢ (𝑟 = 𝑃 → (𝑟 ∨ 𝑠) = (𝑃 ∨ 𝑠)) | |
7 | 6 | eqeq2d 2748 | . . . . 5 ⊢ (𝑟 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠))) |
8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑟 = 𝑃 → ((𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)))) |
9 | neeq2 3005 | . . . . 5 ⊢ (𝑠 = 𝑄 → (𝑃 ≠ 𝑠 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7354 | . . . . . 6 ⊢ (𝑠 = 𝑄 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑄)) | |
11 | 10 | eqeq2d 2748 | . . . . 5 ⊢ (𝑠 = 𝑄 → ((𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) |
12 | 9, 11 | anbi12d 632 | . . . 4 ⊢ (𝑠 = 𝑄 → ((𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)))) |
13 | 8, 12 | rspc2ev 3587 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1374 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
15 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
16 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
17 | llni2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
18 | llni2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 16, 17, 18 | hlatjcl 37685 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 19 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | llni2.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 16, 17, 18, 21 | islln3 37829 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
23 | 15, 20, 22 | syl2anc 585 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
24 | 14, 23 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 joincjn 18131 Atomscatm 37581 HLchlt 37668 LLinesclln 37810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-proset 18115 df-poset 18133 df-plt 18150 df-lub 18166 df-glb 18167 df-join 18168 df-meet 18169 df-p0 18245 df-lat 18252 df-clat 18319 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 |
This theorem is referenced by: 2atneat 37834 islln2a 37836 2at0mat0 37844 ps-2c 37847 lplnnle2at 37860 2atmat 37880 lplnexllnN 37883 dalempjsen 37972 dalemcea 37979 dalem2 37980 dalemdea 37981 dalem16 37998 dalemcjden 38011 dalem23 38015 dalem54 38045 dalem60 38051 llnexchb2 38188 arglem1N 38509 cdlemc5 38514 cdleme20l1 38639 cdleme20l2 38640 cdleme20l 38641 cdleme22b 38660 cdlemeg46req 38848 cdlemh 39136 |
Copyright terms: Public domain | W3C validator |