Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Visualization version   GIF version

Theorem llni2 39499
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j = (join‘𝐾)
llni2.a 𝐴 = (Atoms‘𝐾)
llni2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)

Proof of Theorem llni2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
2 simpl3 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
3 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2730 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) = (𝑃 𝑄))
5 neeq1 2987 . . . . 5 (𝑟 = 𝑃 → (𝑟𝑠𝑃𝑠))
6 oveq1 7376 . . . . . 6 (𝑟 = 𝑃 → (𝑟 𝑠) = (𝑃 𝑠))
76eqeq2d 2740 . . . . 5 (𝑟 = 𝑃 → ((𝑃 𝑄) = (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑠)))
85, 7anbi12d 632 . . . 4 (𝑟 = 𝑃 → ((𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)) ↔ (𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠))))
9 neeq2 2988 . . . . 5 (𝑠 = 𝑄 → (𝑃𝑠𝑃𝑄))
10 oveq2 7377 . . . . . 6 (𝑠 = 𝑄 → (𝑃 𝑠) = (𝑃 𝑄))
1110eqeq2d 2740 . . . . 5 (𝑠 = 𝑄 → ((𝑃 𝑄) = (𝑃 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑄)))
129, 11anbi12d 632 . . . 4 (𝑠 = 𝑄 → ((𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠)) ↔ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))))
138, 12rspc2ev 3598 . . 3 ((𝑃𝐴𝑄𝐴 ∧ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
141, 2, 3, 4, 13syl112anc 1376 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
15 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
16 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
17 llni2.j . . . . 5 = (join‘𝐾)
18 llni2.a . . . . 5 𝐴 = (Atoms‘𝐾)
1916, 17, 18hlatjcl 39353 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2019adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 llni2.n . . . 4 𝑁 = (LLines‘𝐾)
2216, 17, 18, 21islln3 39497 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2315, 20, 22syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2414, 23mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cfv 6499  (class class class)co 7369  Basecbs 17155  joincjn 18252  Atomscatm 39249  HLchlt 39336  LLinesclln 39478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485
This theorem is referenced by:  2atneat  39502  islln2a  39504  2at0mat0  39512  ps-2c  39515  lplnnle2at  39528  2atmat  39548  lplnexllnN  39551  dalempjsen  39640  dalemcea  39647  dalem2  39648  dalemdea  39649  dalem16  39666  dalemcjden  39679  dalem23  39683  dalem54  39713  dalem60  39719  llnexchb2  39856  arglem1N  40177  cdlemc5  40182  cdleme20l1  40307  cdleme20l2  40308  cdleme20l  40309  cdleme22b  40328  cdlemeg46req  40516  cdlemh  40804
  Copyright terms: Public domain W3C validator