![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni2 | Structured version Visualization version GIF version |
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
Ref | Expression |
---|---|
llni2.j | ⊢ ∨ = (join‘𝐾) |
llni2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llni2.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni2 | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
2 | simpl3 1193 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
3 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
4 | eqidd 2741 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)) | |
5 | neeq1 3009 | . . . . 5 ⊢ (𝑟 = 𝑃 → (𝑟 ≠ 𝑠 ↔ 𝑃 ≠ 𝑠)) | |
6 | oveq1 7455 | . . . . . 6 ⊢ (𝑟 = 𝑃 → (𝑟 ∨ 𝑠) = (𝑃 ∨ 𝑠)) | |
7 | 6 | eqeq2d 2751 | . . . . 5 ⊢ (𝑟 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠))) |
8 | 5, 7 | anbi12d 631 | . . . 4 ⊢ (𝑟 = 𝑃 → ((𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)))) |
9 | neeq2 3010 | . . . . 5 ⊢ (𝑠 = 𝑄 → (𝑃 ≠ 𝑠 ↔ 𝑃 ≠ 𝑄)) | |
10 | oveq2 7456 | . . . . . 6 ⊢ (𝑠 = 𝑄 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑄)) | |
11 | 10 | eqeq2d 2751 | . . . . 5 ⊢ (𝑠 = 𝑄 → ((𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) |
12 | 9, 11 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝑄 → ((𝑃 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑠)) ↔ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄)))) |
13 | 8, 12 | rspc2ev 3648 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
14 | 1, 2, 3, 4, 13 | syl112anc 1374 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠))) |
15 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | |
16 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
17 | llni2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
18 | llni2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 16, 17, 18 | hlatjcl 39323 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 19 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | llni2.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 16, 17, 18, 21 | islln3 39467 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
23 | 15, 20, 22 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑟 ≠ 𝑠 ∧ (𝑃 ∨ 𝑄) = (𝑟 ∨ 𝑠)))) |
24 | 14, 23 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 Atomscatm 39219 HLchlt 39306 LLinesclln 39448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 |
This theorem is referenced by: 2atneat 39472 islln2a 39474 2at0mat0 39482 ps-2c 39485 lplnnle2at 39498 2atmat 39518 lplnexllnN 39521 dalempjsen 39610 dalemcea 39617 dalem2 39618 dalemdea 39619 dalem16 39636 dalemcjden 39649 dalem23 39653 dalem54 39683 dalem60 39689 llnexchb2 39826 arglem1N 40147 cdlemc5 40152 cdleme20l1 40277 cdleme20l2 40278 cdleme20l 40279 cdleme22b 40298 cdlemeg46req 40486 cdlemh 40774 |
Copyright terms: Public domain | W3C validator |