Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3a Structured version   Visualization version   GIF version

Theorem 3dimlem3a 36611
Description: Lemma for 3dim3 36620. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dimlem3a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))

Proof of Theorem 3dimlem3a
StepHypRef Expression
1 simp31 1205 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑄 𝑅) 𝑆))
2 simp11 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝐾 ∈ HL)
32hllatd 36515 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝐾 ∈ Lat)
4 simp13 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄𝐴)
5 eqid 2821 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 3dim0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atbase 36440 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
84, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄 ∈ (Base‘𝐾))
9 simp2l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅𝐴)
105, 6atbase 36440 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
119, 10syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅 ∈ (Base‘𝐾))
12 simp12 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃𝐴)
135, 6atbase 36440 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃 ∈ (Base‘𝐾))
15 3dim0.j . . . . . 6 = (join‘𝐾)
165, 15latjrot 17710 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
173, 8, 11, 14, 16syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
18 simp33 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃 ((𝑄 𝑅) 𝑆))
19 simp2r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑆𝐴)
205, 15, 6hlatjcl 36518 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
212, 4, 9, 20syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑄 𝑅) ∈ (Base‘𝐾))
22 simp32 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑃 (𝑄 𝑅))
23 3dim0.l . . . . . . 7 = (le‘𝐾)
245, 23, 15, 6hlexchb1 36535 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑄 𝑅)) → (𝑃 ((𝑄 𝑅) 𝑆) ↔ ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑆)))
252, 12, 19, 21, 22, 24syl131anc 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃 ((𝑄 𝑅) 𝑆) ↔ ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑆)))
2618, 25mpbid 234 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑆))
2717, 26eqtr3d 2858 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑅) 𝑆))
2827breq2d 5078 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑇 ((𝑃 𝑄) 𝑅) ↔ 𝑇 ((𝑄 𝑅) 𝑆)))
291, 28mtbird 327 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-lat 17656  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  3dimlem3  36612  3dim3  36620
  Copyright terms: Public domain W3C validator