Proof of Theorem 3dimlem3a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp31 1210 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) | 
| 2 |  | simp11 1204 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝐾 ∈ HL) | 
| 3 | 2 | hllatd 39365 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝐾 ∈ Lat) | 
| 4 |  | simp13 1206 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑄 ∈ 𝐴) | 
| 5 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 6 |  | 3dim0.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 | 5, 6 | atbase 39290 | . . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 8 | 4, 7 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑄 ∈ (Base‘𝐾)) | 
| 9 |  | simp2l 1200 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑅 ∈ 𝐴) | 
| 10 | 5, 6 | atbase 39290 | . . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) | 
| 11 | 9, 10 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑅 ∈ (Base‘𝐾)) | 
| 12 |  | simp12 1205 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑃 ∈ 𝐴) | 
| 13 | 5, 6 | atbase 39290 | . . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 14 | 12, 13 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑃 ∈ (Base‘𝐾)) | 
| 15 |  | 3dim0.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 16 | 5, 15 | latjrot 18533 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 17 | 3, 8, 11, 14, 16 | syl13anc 1374 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 18 |  | simp33 1212 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) | 
| 19 |  | simp2r 1201 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → 𝑆 ∈ 𝐴) | 
| 20 | 5, 15, 6 | hlatjcl 39368 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 21 | 2, 4, 9, 20 | syl3anc 1373 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 22 |  | simp32 1211 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | 
| 23 |  | 3dim0.l | . . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 24 | 5, 23, 15, 6 | hlexchb1 39386 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆))) | 
| 25 | 2, 12, 19, 21, 22, 24 | syl131anc 1385 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆))) | 
| 26 | 18, 25 | mpbid 232 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) | 
| 27 | 17, 26 | eqtr3d 2779 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) | 
| 28 | 27 | breq2d 5155 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) | 
| 29 | 1, 28 | mtbird 325 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |