| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolsslem | Structured version Visualization version GIF version | ||
| Description: Lemma for ovolss 25438. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| Ref | Expression |
|---|---|
| ovolss.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| ovolss.2 | ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| Ref | Expression |
|---|---|
| ovolsslem | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3965 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) | |
| 2 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) |
| 3 | 2 | anim1d 611 | . . . . . . 7 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 4 | 3 | reximdv 3155 | . . . . . 6 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 5 | 4 | ss2rabdv 4051 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}) |
| 6 | ovolss.2 | . . . . 5 ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 7 | ovolss.1 | . . . . 5 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 8 | 5, 6, 7 | 3sstr4g 4012 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝑁 ⊆ 𝑀) |
| 9 | sstr 3967 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
| 10 | 7 | ovolval 25426 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| 12 | 7 | ssrab3 4057 | . . . . . . . . 9 ⊢ 𝑀 ⊆ ℝ* |
| 13 | infxrlb 13351 | . . . . . . . . 9 ⊢ ((𝑀 ⊆ ℝ* ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) | |
| 14 | 12, 13 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
| 16 | 11, 15 | eqbrtrd 5141 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) ≤ 𝑥) |
| 17 | 16 | ralrimiva 3132 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
| 18 | 9, 17 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
| 19 | ssralv 4027 | . . . 4 ⊢ (𝑁 ⊆ 𝑀 → (∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
| 20 | 8, 18, 19 | sylc 65 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥) |
| 21 | 6 | ssrab3 4057 | . . . 4 ⊢ 𝑁 ⊆ ℝ* |
| 22 | ovolcl 25431 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*) | |
| 23 | 9, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*) |
| 24 | infxrgelb 13352 | . . . 4 ⊢ ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
| 25 | 21, 23, 24 | sylancr 587 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) |
| 26 | 20, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < )) |
| 27 | 6 | ovolval 25426 | . . 3 ⊢ (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
| 28 | 27 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
| 29 | 26, 28 | breqtrrd 5147 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 × cxp 5652 ran crn 5655 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 supcsup 9452 infcinf 9453 ℝcr 11128 1c1 11130 + caddc 11132 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 ℕcn 12240 (,)cioo 13362 seqcseq 14019 abscabs 15253 vol*covol 25415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-ovol 25417 |
| This theorem is referenced by: ovolss 25438 |
| Copyright terms: Public domain | W3C validator |