![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolsslem | Structured version Visualization version GIF version |
Description: Lemma for ovolss 25369. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
ovolss.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
ovolss.2 | ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
Ref | Expression |
---|---|
ovolsslem | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3984 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) | |
2 | 1 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) |
3 | 2 | anim1d 610 | . . . . . . 7 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
4 | 3 | reximdv 3164 | . . . . . 6 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
5 | 4 | ss2rabdv 4068 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}) |
6 | ovolss.2 | . . . . 5 ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
7 | ovolss.1 | . . . . 5 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
8 | 5, 6, 7 | 3sstr4g 4022 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝑁 ⊆ 𝑀) |
9 | sstr 3985 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
10 | 7 | ovolval 25357 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
12 | 7 | ssrab3 4075 | . . . . . . . . 9 ⊢ 𝑀 ⊆ ℝ* |
13 | infxrlb 13319 | . . . . . . . . 9 ⊢ ((𝑀 ⊆ ℝ* ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) | |
14 | 12, 13 | mpan 687 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
16 | 11, 15 | eqbrtrd 5163 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) ≤ 𝑥) |
17 | 16 | ralrimiva 3140 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
18 | 9, 17 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
19 | ssralv 4045 | . . . 4 ⊢ (𝑁 ⊆ 𝑀 → (∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
20 | 8, 18, 19 | sylc 65 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥) |
21 | 6 | ssrab3 4075 | . . . 4 ⊢ 𝑁 ⊆ ℝ* |
22 | ovolcl 25362 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*) | |
23 | 9, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*) |
24 | infxrgelb 13320 | . . . 4 ⊢ ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
25 | 21, 23, 24 | sylancr 586 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) |
26 | 20, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < )) |
27 | 6 | ovolval 25357 | . . 3 ⊢ (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
28 | 27 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
29 | 26, 28 | breqtrrd 5169 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 {crab 3426 ∩ cin 3942 ⊆ wss 3943 ∪ cuni 4902 class class class wbr 5141 × cxp 5667 ran crn 5670 ∘ ccom 5673 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 supcsup 9437 infcinf 9438 ℝcr 11111 1c1 11113 + caddc 11115 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 − cmin 11448 ℕcn 12216 (,)cioo 13330 seqcseq 13972 abscabs 15187 vol*covol 25346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-ovol 25348 |
This theorem is referenced by: ovolss 25369 |
Copyright terms: Public domain | W3C validator |