| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolsslem | Structured version Visualization version GIF version | ||
| Description: Lemma for ovolss 25520. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| Ref | Expression |
|---|---|
| ovolss.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| ovolss.2 | ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| Ref | Expression |
|---|---|
| ovolsslem | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3990 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) | |
| 2 | 1 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) |
| 3 | 2 | anim1d 611 | . . . . . . 7 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 4 | 3 | reximdv 3170 | . . . . . 6 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 5 | 4 | ss2rabdv 4076 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}) |
| 6 | ovolss.2 | . . . . 5 ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 7 | ovolss.1 | . . . . 5 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 8 | 5, 6, 7 | 3sstr4g 4037 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝑁 ⊆ 𝑀) |
| 9 | sstr 3992 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
| 10 | 7 | ovolval 25508 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| 12 | 7 | ssrab3 4082 | . . . . . . . . 9 ⊢ 𝑀 ⊆ ℝ* |
| 13 | infxrlb 13376 | . . . . . . . . 9 ⊢ ((𝑀 ⊆ ℝ* ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) | |
| 14 | 12, 13 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥) |
| 16 | 11, 15 | eqbrtrd 5165 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀) → (vol*‘𝐴) ≤ 𝑥) |
| 17 | 16 | ralrimiva 3146 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
| 18 | 9, 17 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥) |
| 19 | ssralv 4052 | . . . 4 ⊢ (𝑁 ⊆ 𝑀 → (∀𝑥 ∈ 𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
| 20 | 8, 18, 19 | sylc 65 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥) |
| 21 | 6 | ssrab3 4082 | . . . 4 ⊢ 𝑁 ⊆ ℝ* |
| 22 | ovolcl 25513 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*) | |
| 23 | 9, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*) |
| 24 | infxrgelb 13377 | . . . 4 ⊢ ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) | |
| 25 | 21, 23, 24 | sylancr 587 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥 ∈ 𝑁 (vol*‘𝐴) ≤ 𝑥)) |
| 26 | 20, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < )) |
| 27 | 6 | ovolval 25508 | . . 3 ⊢ (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
| 28 | 27 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < )) |
| 29 | 26, 28 | breqtrrd 5171 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 ∩ cin 3950 ⊆ wss 3951 ∪ cuni 4907 class class class wbr 5143 × cxp 5683 ran crn 5686 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 supcsup 9480 infcinf 9481 ℝcr 11154 1c1 11156 + caddc 11158 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 − cmin 11492 ℕcn 12266 (,)cioo 13387 seqcseq 14042 abscabs 15273 vol*covol 25497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-ovol 25499 |
| This theorem is referenced by: ovolss 25520 |
| Copyright terms: Public domain | W3C validator |