MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsslem Structured version   Visualization version   GIF version

Theorem ovolsslem 24067
Description: Lemma for ovolss 24068. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Hypotheses
Ref Expression
ovolss.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolss.2 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolsslem ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem ovolsslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3953 . . . . . . . . 9 (𝐴𝐵 → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
21ad2antrr 724 . . . . . . . 8 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
32anim1d 612 . . . . . . 7 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
43reximdv 3260 . . . . . 6 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
54ss2rabdv 4031 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 ovolss.2 . . . . 5 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
7 ovolss.1 . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
85, 6, 73sstr4g 3991 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝑁𝑀)
9 sstr 3954 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
107ovolval 24056 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
1110adantr 483 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
127ssrab3 4036 . . . . . . . . 9 𝑀 ⊆ ℝ*
13 infxrlb 12706 . . . . . . . . 9 ((𝑀 ⊆ ℝ*𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1412, 13mpan 688 . . . . . . . 8 (𝑥𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1514adantl 484 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1611, 15eqbrtrd 5064 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) ≤ 𝑥)
1716ralrimiva 3169 . . . . 5 (𝐴 ⊆ ℝ → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
189, 17syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
19 ssralv 4012 . . . 4 (𝑁𝑀 → (∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
208, 18, 19sylc 65 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥)
216ssrab3 4036 . . . 4 𝑁 ⊆ ℝ*
22 ovolcl 24061 . . . . 5 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
239, 22syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*)
24 infxrgelb 12707 . . . 4 ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2521, 23, 24sylancr 589 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2620, 25mpbird 259 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ))
276ovolval 24056 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2827adantl 484 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2926, 28breqtrrd 5070 1 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  wrex 3126  {crab 3129  cin 3912  wss 3913   cuni 4814   class class class wbr 5042   × cxp 5529  ran crn 5532  ccom 5535  cfv 6331  (class class class)co 7133  m cmap 8384  supcsup 8882  infcinf 8883  cr 10514  1c1 10516   + caddc 10518  *cxr 10652   < clt 10653  cle 10654  cmin 10848  cn 11616  (,)cioo 12717  seqcseq 13353  abscabs 14573  vol*covol 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-ovol 24047
This theorem is referenced by:  ovolss  24068
  Copyright terms: Public domain W3C validator