MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsslem Structured version   Visualization version   GIF version

Theorem ovolsslem 25412
Description: Lemma for ovolss 25413. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Hypotheses
Ref Expression
ovolss.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolss.2 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolsslem ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem ovolsslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3936 . . . . . . . . 9 (𝐴𝐵 → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
21ad2antrr 726 . . . . . . . 8 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
32anim1d 611 . . . . . . 7 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
43reximdv 3147 . . . . . 6 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
54ss2rabdv 4021 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 ovolss.2 . . . . 5 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
7 ovolss.1 . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
85, 6, 73sstr4g 3983 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝑁𝑀)
9 sstr 3938 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
107ovolval 25401 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
1110adantr 480 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
127ssrab3 4029 . . . . . . . . 9 𝑀 ⊆ ℝ*
13 infxrlb 13234 . . . . . . . . 9 ((𝑀 ⊆ ℝ*𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1412, 13mpan 690 . . . . . . . 8 (𝑥𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1514adantl 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1611, 15eqbrtrd 5111 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) ≤ 𝑥)
1716ralrimiva 3124 . . . . 5 (𝐴 ⊆ ℝ → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
189, 17syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
19 ssralv 3998 . . . 4 (𝑁𝑀 → (∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
208, 18, 19sylc 65 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥)
216ssrab3 4029 . . . 4 𝑁 ⊆ ℝ*
22 ovolcl 25406 . . . . 5 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
239, 22syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*)
24 infxrgelb 13235 . . . 4 ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2521, 23, 24sylancr 587 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2620, 25mpbird 257 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ))
276ovolval 25401 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2827adantl 481 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
2926, 28breqtrrd 5117 1 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897   cuni 4856   class class class wbr 5089   × cxp 5612  ran crn 5615  ccom 5618  cfv 6481  (class class class)co 7346  m cmap 8750  supcsup 9324  infcinf 9325  cr 11005  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344  cn 12125  (,)cioo 13245  seqcseq 13908  abscabs 15141  vol*covol 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-ovol 25392
This theorem is referenced by:  ovolss  25413
  Copyright terms: Public domain W3C validator