MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolsslem Structured version   Visualization version   GIF version

Theorem ovolsslem 23541
Description: Lemma for ovolss 23542. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.)
Hypotheses
Ref Expression
ovolss.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
ovolss.2 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolsslem ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem ovolsslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3767 . . . . . . . . 9 (𝐴𝐵 → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
21ad2antrr 717 . . . . . . . 8 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (𝐵 ran ((,) ∘ 𝑓) → 𝐴 ran ((,) ∘ 𝑓)))
32anim1d 604 . . . . . . 7 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
43reximdv 3161 . . . . . 6 (((𝐴𝐵𝐵 ⊆ ℝ) ∧ 𝑦 ∈ ℝ*) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
54ss2rabdv 3842 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 ovolss.2 . . . . 5 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
7 ovolss.1 . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
85, 6, 73sstr4g 3805 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝑁𝑀)
9 sstr 3768 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
107ovolval 23530 . . . . . . . 8 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
1110adantr 472 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
12 ssrab2 3846 . . . . . . . . . 10 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
137, 12eqsstri 3794 . . . . . . . . 9 𝑀 ⊆ ℝ*
14 infxrlb 12365 . . . . . . . . 9 ((𝑀 ⊆ ℝ*𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1513, 14mpan 681 . . . . . . . 8 (𝑥𝑀 → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1615adantl 473 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → inf(𝑀, ℝ*, < ) ≤ 𝑥)
1711, 16eqbrtrd 4830 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝑀) → (vol*‘𝐴) ≤ 𝑥)
1817ralrimiva 3112 . . . . 5 (𝐴 ⊆ ℝ → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
199, 18syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥)
20 ssralv 3825 . . . 4 (𝑁𝑀 → (∀𝑥𝑀 (vol*‘𝐴) ≤ 𝑥 → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
218, 19, 20sylc 65 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥)
22 ssrab2 3846 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
236, 22eqsstri 3794 . . . 4 𝑁 ⊆ ℝ*
24 ovolcl 23535 . . . . 5 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
259, 24syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ∈ ℝ*)
26 infxrgelb 12366 . . . 4 ((𝑁 ⊆ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2723, 25, 26sylancr 581 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ) → ((vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ) ↔ ∀𝑥𝑁 (vol*‘𝐴) ≤ 𝑥))
2821, 27mpbird 248 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ inf(𝑁, ℝ*, < ))
296ovolval 23530 . . 3 (𝐵 ⊆ ℝ → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
3029adantl 473 . 2 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
3128, 30breqtrrd 4836 1 ((𝐴𝐵𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3054  wrex 3055  {crab 3058  cin 3730  wss 3731   cuni 4593   class class class wbr 4808   × cxp 5274  ran crn 5277  ccom 5280  cfv 6067  (class class class)co 6841  𝑚 cmap 8059  supcsup 8552  infcinf 8553  cr 10187  1c1 10189   + caddc 10191  *cxr 10326   < clt 10327  cle 10328  cmin 10519  cn 11273  (,)cioo 12376  seqcseq 13007  abscabs 14260  vol*covol 23519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-po 5197  df-so 5198  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-ovol 23521
This theorem is referenced by:  ovolss  23542
  Copyright terms: Public domain W3C validator