Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. 2
β’ (π β (π βΎs π») = (π βΎs π»)) |
2 | | eqidd 2733 |
. 2
β’ (π β (0gβπ) = (0gβπ)) |
3 | | eqidd 2733 |
. 2
β’ (π β (+gβπ) = (+gβπ)) |
4 | | dsmmsubg.r |
. . . . . 6
β’ (π β π
:πΌβΆGrp) |
5 | | dsmmsubg.i |
. . . . . 6
β’ (π β πΌ β π) |
6 | 4, 5 | fexd 7225 |
. . . . 5
β’ (π β π
β V) |
7 | | eqid 2732 |
. . . . . 6
β’ {π β (Baseβ(πXsπ
)) β£ {π β dom π
β£ (πβπ) β (0gβ(π
βπ))} β Fin} = {π β (Baseβ(πXsπ
)) β£ {π β dom π
β£ (πβπ) β (0gβ(π
βπ))} β Fin} |
8 | 7 | dsmmbase 21281 |
. . . . 5
β’ (π
β V β {π β (Baseβ(πXsπ
)) β£ {π β dom π
β£ (πβπ) β (0gβ(π
βπ))} β Fin} = (Baseβ(π βm π
))) |
9 | 6, 8 | syl 17 |
. . . 4
β’ (π β {π β (Baseβ(πXsπ
)) β£ {π β dom π
β£ (πβπ) β (0gβ(π
βπ))} β Fin} = (Baseβ(π βm π
))) |
10 | | ssrab2 4076 |
. . . 4
β’ {π β (Baseβ(πXsπ
)) β£ {π β dom π
β£ (πβπ) β (0gβ(π
βπ))} β Fin} β (Baseβ(πXsπ
)) |
11 | 9, 10 | eqsstrrdi 4036 |
. . 3
β’ (π β (Baseβ(π βm π
)) β (Baseβ(πXsπ
))) |
12 | | dsmmsubg.h |
. . 3
β’ π» = (Baseβ(π βm π
)) |
13 | | dsmmsubg.p |
. . . 4
β’ π = (πXsπ
) |
14 | 13 | fveq2i 6891 |
. . 3
β’
(Baseβπ) =
(Baseβ(πXsπ
)) |
15 | 11, 12, 14 | 3sstr4g 4026 |
. 2
β’ (π β π» β (Baseβπ)) |
16 | | dsmmsubg.s |
. . 3
β’ (π β π β π) |
17 | | grpmnd 18822 |
. . . . 5
β’ (π β Grp β π β Mnd) |
18 | 17 | ssriv 3985 |
. . . 4
β’ Grp
β Mnd |
19 | | fss 6731 |
. . . 4
β’ ((π
:πΌβΆGrp β§ Grp β Mnd) β
π
:πΌβΆMnd) |
20 | 4, 18, 19 | sylancl 586 |
. . 3
β’ (π β π
:πΌβΆMnd) |
21 | | eqid 2732 |
. . 3
β’
(0gβπ) = (0gβπ) |
22 | 13, 12, 5, 16, 20, 21 | dsmm0cl 21286 |
. 2
β’ (π β (0gβπ) β π») |
23 | 5 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π β π» β§ π β π») β πΌ β π) |
24 | 16 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π β π» β§ π β π») β π β π) |
25 | 20 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π β π» β§ π β π») β π
:πΌβΆMnd) |
26 | | simp2 1137 |
. . 3
β’ ((π β§ π β π» β§ π β π») β π β π») |
27 | | simp3 1138 |
. . 3
β’ ((π β§ π β π» β§ π β π») β π β π») |
28 | | eqid 2732 |
. . 3
β’
(+gβπ) = (+gβπ) |
29 | 13, 12, 23, 24, 25, 26, 27, 28 | dsmmacl 21287 |
. 2
β’ ((π β§ π β π» β§ π β π») β (π(+gβπ)π) β π») |
30 | 13, 5, 16, 4 | prdsgrpd 18929 |
. . . . 5
β’ (π β π β Grp) |
31 | 30 | adantr 481 |
. . . 4
β’ ((π β§ π β π») β π β Grp) |
32 | 15 | sselda 3981 |
. . . 4
β’ ((π β§ π β π») β π β (Baseβπ)) |
33 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
34 | | eqid 2732 |
. . . . 5
β’
(invgβπ) = (invgβπ) |
35 | 33, 34 | grpinvcl 18868 |
. . . 4
β’ ((π β Grp β§ π β (Baseβπ)) β
((invgβπ)βπ) β (Baseβπ)) |
36 | 31, 32, 35 | syl2anc 584 |
. . 3
β’ ((π β§ π β π») β ((invgβπ)βπ) β (Baseβπ)) |
37 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β π») β π β π») |
38 | | eqid 2732 |
. . . . . . 7
β’ (π βm π
) = (π βm π
) |
39 | 5 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π») β πΌ β π) |
40 | 4 | ffnd 6715 |
. . . . . . . 8
β’ (π β π
Fn πΌ) |
41 | 40 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π») β π
Fn πΌ) |
42 | 13, 38, 33, 12, 39, 41 | dsmmelbas 21285 |
. . . . . 6
β’ ((π β§ π β π») β (π β π» β (π β (Baseβπ) β§ {π β πΌ β£ (πβπ) β (0gβ(π
βπ))} β Fin))) |
43 | 37, 42 | mpbid 231 |
. . . . 5
β’ ((π β§ π β π») β (π β (Baseβπ) β§ {π β πΌ β£ (πβπ) β (0gβ(π
βπ))} β Fin)) |
44 | 43 | simprd 496 |
. . . 4
β’ ((π β§ π β π») β {π β πΌ β£ (πβπ) β (0gβ(π
βπ))} β Fin) |
45 | 5 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β πΌ β π) |
46 | 16 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β π β π) |
47 | 4 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β π
:πΌβΆGrp) |
48 | 32 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β π β (Baseβπ)) |
49 | | simpr 485 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β π β πΌ) |
50 | 13, 45, 46, 47, 33, 34, 48, 49 | prdsinvgd2 21288 |
. . . . . . . . 9
β’ (((π β§ π β π») β§ π β πΌ) β (((invgβπ)βπ)βπ) = ((invgβ(π
βπ))β(πβπ))) |
51 | 50 | adantrr 715 |
. . . . . . . 8
β’ (((π β§ π β π») β§ (π β πΌ β§ (πβπ) = (0gβ(π
βπ)))) β (((invgβπ)βπ)βπ) = ((invgβ(π
βπ))β(πβπ))) |
52 | | fveq2 6888 |
. . . . . . . . 9
β’ ((πβπ) = (0gβ(π
βπ)) β ((invgβ(π
βπ))β(πβπ)) = ((invgβ(π
βπ))β(0gβ(π
βπ)))) |
53 | 52 | ad2antll 727 |
. . . . . . . 8
β’ (((π β§ π β π») β§ (π β πΌ β§ (πβπ) = (0gβ(π
βπ)))) β ((invgβ(π
βπ))β(πβπ)) = ((invgβ(π
βπ))β(0gβ(π
βπ)))) |
54 | 4 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’ ((π β§ π β πΌ) β (π
βπ) β Grp) |
55 | 54 | adantlr 713 |
. . . . . . . . . 10
β’ (((π β§ π β π») β§ π β πΌ) β (π
βπ) β Grp) |
56 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0gβ(π
βπ)) = (0gβ(π
βπ)) |
57 | | eqid 2732 |
. . . . . . . . . . 11
β’
(invgβ(π
βπ)) = (invgβ(π
βπ)) |
58 | 56, 57 | grpinvid 18880 |
. . . . . . . . . 10
β’ ((π
βπ) β Grp β
((invgβ(π
βπ))β(0gβ(π
βπ))) = (0gβ(π
βπ))) |
59 | 55, 58 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β π») β§ π β πΌ) β ((invgβ(π
βπ))β(0gβ(π
βπ))) = (0gβ(π
βπ))) |
60 | 59 | adantrr 715 |
. . . . . . . 8
β’ (((π β§ π β π») β§ (π β πΌ β§ (πβπ) = (0gβ(π
βπ)))) β ((invgβ(π
βπ))β(0gβ(π
βπ))) = (0gβ(π
βπ))) |
61 | 51, 53, 60 | 3eqtrd 2776 |
. . . . . . 7
β’ (((π β§ π β π») β§ (π β πΌ β§ (πβπ) = (0gβ(π
βπ)))) β (((invgβπ)βπ)βπ) = (0gβ(π
βπ))) |
62 | 61 | expr 457 |
. . . . . 6
β’ (((π β§ π β π») β§ π β πΌ) β ((πβπ) = (0gβ(π
βπ)) β (((invgβπ)βπ)βπ) = (0gβ(π
βπ)))) |
63 | 62 | necon3d 2961 |
. . . . 5
β’ (((π β§ π β π») β§ π β πΌ) β ((((invgβπ)βπ)βπ) β (0gβ(π
βπ)) β (πβπ) β (0gβ(π
βπ)))) |
64 | 63 | ss2rabdv 4072 |
. . . 4
β’ ((π β§ π β π») β {π β πΌ β£ (((invgβπ)βπ)βπ) β (0gβ(π
βπ))} β {π β πΌ β£ (πβπ) β (0gβ(π
βπ))}) |
65 | 44, 64 | ssfid 9263 |
. . 3
β’ ((π β§ π β π») β {π β πΌ β£ (((invgβπ)βπ)βπ) β (0gβ(π
βπ))} β Fin) |
66 | 13, 38, 33, 12, 39, 41 | dsmmelbas 21285 |
. . 3
β’ ((π β§ π β π») β (((invgβπ)βπ) β π» β (((invgβπ)βπ) β (Baseβπ) β§ {π β πΌ β£ (((invgβπ)βπ)βπ) β (0gβ(π
βπ))} β Fin))) |
67 | 36, 65, 66 | mpbir2and 711 |
. 2
β’ ((π β§ π β π») β ((invgβπ)βπ) β π») |
68 | 1, 2, 3, 15, 22, 29, 67, 30 | issubgrpd2 19016 |
1
β’ (π β π» β (SubGrpβπ)) |