MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Visualization version   GIF version

Theorem dsmmsubg 20522
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p 𝑃 = (𝑆Xs𝑅)
dsmmsubg.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmsubg.i (𝜑𝐼𝑊)
dsmmsubg.s (𝜑𝑆𝑉)
dsmmsubg.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
dsmmsubg (𝜑𝐻 ∈ (SubGrp‘𝑃))

Proof of Theorem dsmmsubg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2759 . 2 (𝜑 → (𝑃s 𝐻) = (𝑃s 𝐻))
2 eqidd 2759 . 2 (𝜑 → (0g𝑃) = (0g𝑃))
3 eqidd 2759 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
4 dsmmsubg.r . . . . . 6 (𝜑𝑅:𝐼⟶Grp)
5 dsmmsubg.i . . . . . 6 (𝜑𝐼𝑊)
6 fex 6986 . . . . . 6 ((𝑅:𝐼⟶Grp ∧ 𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 587 . . . . 5 (𝜑𝑅 ∈ V)
8 eqid 2758 . . . . . 6 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin}
98dsmmbase 20514 . . . . 5 (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
107, 9syl 17 . . . 4 (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
11 ssrab2 3986 . . . 4 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
1210, 11eqsstrrdi 3949 . . 3 (𝜑 → (Base‘(𝑆m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅)))
13 dsmmsubg.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
14 dsmmsubg.p . . . 4 𝑃 = (𝑆Xs𝑅)
1514fveq2i 6666 . . 3 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
1612, 13, 153sstr4g 3939 . 2 (𝜑𝐻 ⊆ (Base‘𝑃))
17 dsmmsubg.s . . 3 (𝜑𝑆𝑉)
18 grpmnd 18190 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1918ssriv 3898 . . . 4 Grp ⊆ Mnd
20 fss 6517 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
214, 19, 20sylancl 589 . . 3 (𝜑𝑅:𝐼⟶Mnd)
22 eqid 2758 . . 3 (0g𝑃) = (0g𝑃)
2314, 13, 5, 17, 21, 22dsmm0cl 20519 . 2 (𝜑 → (0g𝑃) ∈ 𝐻)
2453ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝐼𝑊)
25173ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑆𝑉)
26213ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑅:𝐼⟶Mnd)
27 simp2 1134 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑎𝐻)
28 simp3 1135 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑏𝐻)
29 eqid 2758 . . 3 (+g𝑃) = (+g𝑃)
3014, 13, 24, 25, 26, 27, 28, 29dsmmacl 20520 . 2 ((𝜑𝑎𝐻𝑏𝐻) → (𝑎(+g𝑃)𝑏) ∈ 𝐻)
3114, 5, 17, 4prdsgrpd 18290 . . . . 5 (𝜑𝑃 ∈ Grp)
3231adantr 484 . . . 4 ((𝜑𝑎𝐻) → 𝑃 ∈ Grp)
3316sselda 3894 . . . 4 ((𝜑𝑎𝐻) → 𝑎 ∈ (Base‘𝑃))
34 eqid 2758 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
35 eqid 2758 . . . . 5 (invg𝑃) = (invg𝑃)
3634, 35grpinvcl 18232 . . . 4 ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
3732, 33, 36syl2anc 587 . . 3 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
38 simpr 488 . . . . . 6 ((𝜑𝑎𝐻) → 𝑎𝐻)
39 eqid 2758 . . . . . . 7 (𝑆m 𝑅) = (𝑆m 𝑅)
405adantr 484 . . . . . . 7 ((𝜑𝑎𝐻) → 𝐼𝑊)
414ffnd 6504 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4241adantr 484 . . . . . . 7 ((𝜑𝑎𝐻) → 𝑅 Fn 𝐼)
4314, 39, 34, 13, 40, 42dsmmelbas 20518 . . . . . 6 ((𝜑𝑎𝐻) → (𝑎𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
4438, 43mpbid 235 . . . . 5 ((𝜑𝑎𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin))
4544simprd 499 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
465ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝐼𝑊)
4717ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑆𝑉)
484ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑅:𝐼⟶Grp)
4933adantr 484 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑎 ∈ (Base‘𝑃))
50 simpr 488 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑏𝐼)
5114, 46, 47, 48, 34, 35, 49, 50prdsinvgd2 20521 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
5251adantrr 716 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
53 fveq2 6663 . . . . . . . . 9 ((𝑎𝑏) = (0g‘(𝑅𝑏)) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
5453ad2antll 728 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
554ffvelrnda 6848 . . . . . . . . . . 11 ((𝜑𝑏𝐼) → (𝑅𝑏) ∈ Grp)
5655adantlr 714 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (𝑅𝑏) ∈ Grp)
57 eqid 2758 . . . . . . . . . . 11 (0g‘(𝑅𝑏)) = (0g‘(𝑅𝑏))
58 eqid 2758 . . . . . . . . . . 11 (invg‘(𝑅𝑏)) = (invg‘(𝑅𝑏))
5957, 58grpinvid 18241 . . . . . . . . . 10 ((𝑅𝑏) ∈ Grp → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6056, 59syl 17 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6160adantrr 716 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6252, 54, 613eqtrd 2797 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏)))
6362expr 460 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((𝑎𝑏) = (0g‘(𝑅𝑏)) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏))))
6463necon3d 2972 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏)) → (𝑎𝑏) ≠ (0g‘(𝑅𝑏))))
6564ss2rabdv 3982 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ⊆ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))})
6645, 65ssfid 8791 . . 3 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
6714, 39, 34, 13, 40, 42dsmmelbas 20518 . . 3 ((𝜑𝑎𝐻) → (((invg𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
6837, 66, 67mpbir2and 712 . 2 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ 𝐻)
691, 2, 3, 16, 23, 30, 68, 31issubgrpd2 18376 1 (𝜑𝐻 ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  {crab 3074  Vcvv 3409  wss 3860  dom cdm 5528   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156  Fincfn 8540  Basecbs 16555  s cress 16556  +gcplusg 16637  0gc0g 16785  Xscprds 16791  Mndcmnd 17991  Grpcgrp 18183  invgcminusg 18184  SubGrpcsubg 18354  m cdsmm 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-hom 16661  df-cco 16662  df-0g 16787  df-prds 16793  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-subg 18357  df-dsmm 20511
This theorem is referenced by:  dsmmlss  20523
  Copyright terms: Public domain W3C validator