MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Visualization version   GIF version

Theorem dsmmsubg 21689
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p 𝑃 = (𝑆Xs𝑅)
dsmmsubg.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmsubg.i (𝜑𝐼𝑊)
dsmmsubg.s (𝜑𝑆𝑉)
dsmmsubg.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
dsmmsubg (𝜑𝐻 ∈ (SubGrp‘𝑃))

Proof of Theorem dsmmsubg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (𝑃s 𝐻) = (𝑃s 𝐻))
2 eqidd 2734 . 2 (𝜑 → (0g𝑃) = (0g𝑃))
3 eqidd 2734 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
4 dsmmsubg.r . . . . . 6 (𝜑𝑅:𝐼⟶Grp)
5 dsmmsubg.i . . . . . 6 (𝜑𝐼𝑊)
64, 5fexd 7170 . . . . 5 (𝜑𝑅 ∈ V)
7 eqid 2733 . . . . . 6 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin}
87dsmmbase 21681 . . . . 5 (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
96, 8syl 17 . . . 4 (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
10 ssrab2 4029 . . . 4 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
119, 10eqsstrrdi 3976 . . 3 (𝜑 → (Base‘(𝑆m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅)))
12 dsmmsubg.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
13 dsmmsubg.p . . . 4 𝑃 = (𝑆Xs𝑅)
1413fveq2i 6834 . . 3 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
1511, 12, 143sstr4g 3984 . 2 (𝜑𝐻 ⊆ (Base‘𝑃))
16 dsmmsubg.s . . 3 (𝜑𝑆𝑉)
17 grpmnd 18861 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1817ssriv 3934 . . . 4 Grp ⊆ Mnd
19 fss 6675 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
204, 18, 19sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
21 eqid 2733 . . 3 (0g𝑃) = (0g𝑃)
2213, 12, 5, 16, 20, 21dsmm0cl 21686 . 2 (𝜑 → (0g𝑃) ∈ 𝐻)
2353ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝐼𝑊)
24163ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑆𝑉)
25203ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑅:𝐼⟶Mnd)
26 simp2 1137 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑎𝐻)
27 simp3 1138 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑏𝐻)
28 eqid 2733 . . 3 (+g𝑃) = (+g𝑃)
2913, 12, 23, 24, 25, 26, 27, 28dsmmacl 21687 . 2 ((𝜑𝑎𝐻𝑏𝐻) → (𝑎(+g𝑃)𝑏) ∈ 𝐻)
3013, 5, 16, 4prdsgrpd 18971 . . . . 5 (𝜑𝑃 ∈ Grp)
3130adantr 480 . . . 4 ((𝜑𝑎𝐻) → 𝑃 ∈ Grp)
3215sselda 3930 . . . 4 ((𝜑𝑎𝐻) → 𝑎 ∈ (Base‘𝑃))
33 eqid 2733 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
34 eqid 2733 . . . . 5 (invg𝑃) = (invg𝑃)
3533, 34grpinvcl 18908 . . . 4 ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
3631, 32, 35syl2anc 584 . . 3 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
37 simpr 484 . . . . . 6 ((𝜑𝑎𝐻) → 𝑎𝐻)
38 eqid 2733 . . . . . . 7 (𝑆m 𝑅) = (𝑆m 𝑅)
395adantr 480 . . . . . . 7 ((𝜑𝑎𝐻) → 𝐼𝑊)
404ffnd 6660 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4140adantr 480 . . . . . . 7 ((𝜑𝑎𝐻) → 𝑅 Fn 𝐼)
4213, 38, 33, 12, 39, 41dsmmelbas 21685 . . . . . 6 ((𝜑𝑎𝐻) → (𝑎𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
4337, 42mpbid 232 . . . . 5 ((𝜑𝑎𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin))
4443simprd 495 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
455ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝐼𝑊)
4616ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑆𝑉)
474ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑅:𝐼⟶Grp)
4832adantr 480 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑎 ∈ (Base‘𝑃))
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑏𝐼)
5013, 45, 46, 47, 33, 34, 48, 49prdsinvgd2 21688 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
5150adantrr 717 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
52 fveq2 6831 . . . . . . . . 9 ((𝑎𝑏) = (0g‘(𝑅𝑏)) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
5352ad2antll 729 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
544ffvelcdmda 7026 . . . . . . . . . . 11 ((𝜑𝑏𝐼) → (𝑅𝑏) ∈ Grp)
5554adantlr 715 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (𝑅𝑏) ∈ Grp)
56 eqid 2733 . . . . . . . . . . 11 (0g‘(𝑅𝑏)) = (0g‘(𝑅𝑏))
57 eqid 2733 . . . . . . . . . . 11 (invg‘(𝑅𝑏)) = (invg‘(𝑅𝑏))
5856, 57grpinvid 18920 . . . . . . . . . 10 ((𝑅𝑏) ∈ Grp → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
5955, 58syl 17 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6059adantrr 717 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6151, 53, 603eqtrd 2772 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏)))
6261expr 456 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((𝑎𝑏) = (0g‘(𝑅𝑏)) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏))))
6362necon3d 2950 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏)) → (𝑎𝑏) ≠ (0g‘(𝑅𝑏))))
6463ss2rabdv 4024 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ⊆ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))})
6544, 64ssfid 9164 . . 3 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
6613, 38, 33, 12, 39, 41dsmmelbas 21685 . . 3 ((𝜑𝑎𝐻) → (((invg𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
6736, 65, 66mpbir2and 713 . 2 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ 𝐻)
681, 2, 3, 15, 22, 29, 67, 30issubgrpd2 19063 1 (𝜑𝐻 ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  wss 3898  dom cdm 5621   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  Basecbs 17127  s cress 17148  +gcplusg 17168  0gc0g 17350  Xscprds 17356  Mndcmnd 18650  Grpcgrp 18854  invgcminusg 18855  SubGrpcsubg 19041  m cdsmm 21677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-prds 17358  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-subg 19044  df-dsmm 21678
This theorem is referenced by:  dsmmlss  21690
  Copyright terms: Public domain W3C validator