MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Visualization version   GIF version

Theorem dsmmsubg 21684
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p 𝑃 = (𝑆Xs𝑅)
dsmmsubg.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmsubg.i (𝜑𝐼𝑊)
dsmmsubg.s (𝜑𝑆𝑉)
dsmmsubg.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
dsmmsubg (𝜑𝐻 ∈ (SubGrp‘𝑃))

Proof of Theorem dsmmsubg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2729 . 2 (𝜑 → (𝑃s 𝐻) = (𝑃s 𝐻))
2 eqidd 2729 . 2 (𝜑 → (0g𝑃) = (0g𝑃))
3 eqidd 2729 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
4 dsmmsubg.r . . . . . 6 (𝜑𝑅:𝐼⟶Grp)
5 dsmmsubg.i . . . . . 6 (𝜑𝐼𝑊)
64, 5fexd 7245 . . . . 5 (𝜑𝑅 ∈ V)
7 eqid 2728 . . . . . 6 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin}
87dsmmbase 21676 . . . . 5 (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
96, 8syl 17 . . . 4 (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
10 ssrab2 4077 . . . 4 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
119, 10eqsstrrdi 4037 . . 3 (𝜑 → (Base‘(𝑆m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅)))
12 dsmmsubg.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
13 dsmmsubg.p . . . 4 𝑃 = (𝑆Xs𝑅)
1413fveq2i 6905 . . 3 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
1511, 12, 143sstr4g 4027 . 2 (𝜑𝐻 ⊆ (Base‘𝑃))
16 dsmmsubg.s . . 3 (𝜑𝑆𝑉)
17 grpmnd 18904 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1817ssriv 3986 . . . 4 Grp ⊆ Mnd
19 fss 6744 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
204, 18, 19sylancl 584 . . 3 (𝜑𝑅:𝐼⟶Mnd)
21 eqid 2728 . . 3 (0g𝑃) = (0g𝑃)
2213, 12, 5, 16, 20, 21dsmm0cl 21681 . 2 (𝜑 → (0g𝑃) ∈ 𝐻)
2353ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝐼𝑊)
24163ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑆𝑉)
25203ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑅:𝐼⟶Mnd)
26 simp2 1134 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑎𝐻)
27 simp3 1135 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑏𝐻)
28 eqid 2728 . . 3 (+g𝑃) = (+g𝑃)
2913, 12, 23, 24, 25, 26, 27, 28dsmmacl 21682 . 2 ((𝜑𝑎𝐻𝑏𝐻) → (𝑎(+g𝑃)𝑏) ∈ 𝐻)
3013, 5, 16, 4prdsgrpd 19013 . . . . 5 (𝜑𝑃 ∈ Grp)
3130adantr 479 . . . 4 ((𝜑𝑎𝐻) → 𝑃 ∈ Grp)
3215sselda 3982 . . . 4 ((𝜑𝑎𝐻) → 𝑎 ∈ (Base‘𝑃))
33 eqid 2728 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
34 eqid 2728 . . . . 5 (invg𝑃) = (invg𝑃)
3533, 34grpinvcl 18951 . . . 4 ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
3631, 32, 35syl2anc 582 . . 3 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
37 simpr 483 . . . . . 6 ((𝜑𝑎𝐻) → 𝑎𝐻)
38 eqid 2728 . . . . . . 7 (𝑆m 𝑅) = (𝑆m 𝑅)
395adantr 479 . . . . . . 7 ((𝜑𝑎𝐻) → 𝐼𝑊)
404ffnd 6728 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4140adantr 479 . . . . . . 7 ((𝜑𝑎𝐻) → 𝑅 Fn 𝐼)
4213, 38, 33, 12, 39, 41dsmmelbas 21680 . . . . . 6 ((𝜑𝑎𝐻) → (𝑎𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
4337, 42mpbid 231 . . . . 5 ((𝜑𝑎𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin))
4443simprd 494 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
455ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝐼𝑊)
4616ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑆𝑉)
474ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑅:𝐼⟶Grp)
4832adantr 479 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑎 ∈ (Base‘𝑃))
49 simpr 483 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑏𝐼)
5013, 45, 46, 47, 33, 34, 48, 49prdsinvgd2 21683 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
5150adantrr 715 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
52 fveq2 6902 . . . . . . . . 9 ((𝑎𝑏) = (0g‘(𝑅𝑏)) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
5352ad2antll 727 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
544ffvelcdmda 7099 . . . . . . . . . . 11 ((𝜑𝑏𝐼) → (𝑅𝑏) ∈ Grp)
5554adantlr 713 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (𝑅𝑏) ∈ Grp)
56 eqid 2728 . . . . . . . . . . 11 (0g‘(𝑅𝑏)) = (0g‘(𝑅𝑏))
57 eqid 2728 . . . . . . . . . . 11 (invg‘(𝑅𝑏)) = (invg‘(𝑅𝑏))
5856, 57grpinvid 18963 . . . . . . . . . 10 ((𝑅𝑏) ∈ Grp → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
5955, 58syl 17 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6059adantrr 715 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6151, 53, 603eqtrd 2772 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏)))
6261expr 455 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((𝑎𝑏) = (0g‘(𝑅𝑏)) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏))))
6362necon3d 2958 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏)) → (𝑎𝑏) ≠ (0g‘(𝑅𝑏))))
6463ss2rabdv 4073 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ⊆ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))})
6544, 64ssfid 9298 . . 3 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
6613, 38, 33, 12, 39, 41dsmmelbas 21680 . . 3 ((𝜑𝑎𝐻) → (((invg𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
6736, 65, 66mpbir2and 711 . 2 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ 𝐻)
681, 2, 3, 15, 22, 29, 67, 30issubgrpd2 19104 1 (𝜑𝐻 ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  {crab 3430  Vcvv 3473  wss 3949  dom cdm 5682   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  Fincfn 8970  Basecbs 17187  s cress 17216  +gcplusg 17240  0gc0g 17428  Xscprds 17434  Mndcmnd 18701  Grpcgrp 18897  invgcminusg 18898  SubGrpcsubg 19082  m cdsmm 21672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-0g 17430  df-prds 17436  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-subg 19085  df-dsmm 21673
This theorem is referenced by:  dsmmlss  21685
  Copyright terms: Public domain W3C validator