Step | Hyp | Ref
| Expression |
1 | | eqidd 2759 |
. 2
⊢ (𝜑 → (𝑃 ↾s 𝐻) = (𝑃 ↾s 𝐻)) |
2 | | eqidd 2759 |
. 2
⊢ (𝜑 → (0g‘𝑃) = (0g‘𝑃)) |
3 | | eqidd 2759 |
. 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) |
4 | | dsmmsubg.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
5 | | dsmmsubg.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
6 | | fex 6986 |
. . . . . 6
⊢ ((𝑅:𝐼⟶Grp ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
7 | 4, 5, 6 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
8 | | eqid 2758 |
. . . . . 6
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} |
9 | 8 | dsmmbase 20514 |
. . . . 5
⊢ (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
10 | 7, 9 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
11 | | ssrab2 3986 |
. . . 4
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) |
12 | 10, 11 | eqsstrrdi 3949 |
. . 3
⊢ (𝜑 → (Base‘(𝑆 ⊕m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅))) |
13 | | dsmmsubg.h |
. . 3
⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
14 | | dsmmsubg.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
15 | 14 | fveq2i 6666 |
. . 3
⊢
(Base‘𝑃) =
(Base‘(𝑆Xs𝑅)) |
16 | 12, 13, 15 | 3sstr4g 3939 |
. 2
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝑃)) |
17 | | dsmmsubg.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
18 | | grpmnd 18190 |
. . . . 5
⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) |
19 | 18 | ssriv 3898 |
. . . 4
⊢ Grp
⊆ Mnd |
20 | | fss 6517 |
. . . 4
⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) →
𝑅:𝐼⟶Mnd) |
21 | 4, 19, 20 | sylancl 589 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
22 | | eqid 2758 |
. . 3
⊢
(0g‘𝑃) = (0g‘𝑃) |
23 | 14, 13, 5, 17, 21, 22 | dsmm0cl 20519 |
. 2
⊢ (𝜑 → (0g‘𝑃) ∈ 𝐻) |
24 | 5 | 3ad2ant1 1130 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
25 | 17 | 3ad2ant1 1130 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑆 ∈ 𝑉) |
26 | 21 | 3ad2ant1 1130 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑅:𝐼⟶Mnd) |
27 | | simp2 1134 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
28 | | simp3 1135 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝐻) |
29 | | eqid 2758 |
. . 3
⊢
(+g‘𝑃) = (+g‘𝑃) |
30 | 14, 13, 24, 25, 26, 27, 28, 29 | dsmmacl 20520 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → (𝑎(+g‘𝑃)𝑏) ∈ 𝐻) |
31 | 14, 5, 17, 4 | prdsgrpd 18290 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
32 | 31 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑃 ∈ Grp) |
33 | 16 | sselda 3894 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ (Base‘𝑃)) |
34 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
35 | | eqid 2758 |
. . . . 5
⊢
(invg‘𝑃) = (invg‘𝑃) |
36 | 34, 35 | grpinvcl 18232 |
. . . 4
⊢ ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) →
((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
37 | 32, 33, 36 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
38 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
39 | | eqid 2758 |
. . . . . . 7
⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) |
40 | 5 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
41 | 4 | ffnd 6504 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
42 | 41 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑅 Fn 𝐼) |
43 | 14, 39, 34, 13, 40, 42 | dsmmelbas 20518 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ 𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
44 | 38, 43 | mpbid 235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin)) |
45 | 44 | simprd 499 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
46 | 5 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
47 | 17 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
48 | 4 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑅:𝐼⟶Grp) |
49 | 33 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑃)) |
50 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ 𝐼) |
51 | 14, 46, 47, 48, 34, 35, 49, 50 | prdsinvgd2 20521 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
52 | 51 | adantrr 716 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
53 | | fveq2 6663 |
. . . . . . . . 9
⊢ ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
54 | 53 | ad2antll 728 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
55 | 4 | ffvelrnda 6848 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
56 | 55 | adantlr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
57 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅‘𝑏)) = (0g‘(𝑅‘𝑏)) |
58 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(invg‘(𝑅‘𝑏)) = (invg‘(𝑅‘𝑏)) |
59 | 57, 58 | grpinvid 18241 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑏) ∈ Grp →
((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
60 | 56, 59 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
61 | 60 | adantrr 716 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
62 | 52, 54, 61 | 3eqtrd 2797 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏))) |
63 | 62 | expr 460 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏)))) |
64 | 63 | necon3d 2972 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏)) → (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏)))) |
65 | 64 | ss2rabdv 3982 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ⊆ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))}) |
66 | 45, 65 | ssfid 8791 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
67 | 14, 39, 34, 13, 40, 42 | dsmmelbas 20518 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (((invg‘𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
68 | 37, 66, 67 | mpbir2and 712 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ 𝐻) |
69 | 1, 2, 3, 16, 23, 30, 68, 31 | issubgrpd2 18376 |
1
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝑃)) |