| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. 2
⊢ (𝜑 → (𝑃 ↾s 𝐻) = (𝑃 ↾s 𝐻)) |
| 2 | | eqidd 2737 |
. 2
⊢ (𝜑 → (0g‘𝑃) = (0g‘𝑃)) |
| 3 | | eqidd 2737 |
. 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) |
| 4 | | dsmmsubg.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
| 5 | | dsmmsubg.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 6 | 4, 5 | fexd 7224 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | | eqid 2736 |
. . . . . 6
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} |
| 8 | 7 | dsmmbase 21700 |
. . . . 5
⊢ (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 9 | 6, 8 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
| 10 | | ssrab2 4060 |
. . . 4
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) |
| 11 | 9, 10 | eqsstrrdi 4009 |
. . 3
⊢ (𝜑 → (Base‘(𝑆 ⊕m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅))) |
| 12 | | dsmmsubg.h |
. . 3
⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| 13 | | dsmmsubg.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
| 14 | 13 | fveq2i 6884 |
. . 3
⊢
(Base‘𝑃) =
(Base‘(𝑆Xs𝑅)) |
| 15 | 11, 12, 14 | 3sstr4g 4017 |
. 2
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝑃)) |
| 16 | | dsmmsubg.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 17 | | grpmnd 18928 |
. . . . 5
⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) |
| 18 | 17 | ssriv 3967 |
. . . 4
⊢ Grp
⊆ Mnd |
| 19 | | fss 6727 |
. . . 4
⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) →
𝑅:𝐼⟶Mnd) |
| 20 | 4, 18, 19 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 21 | | eqid 2736 |
. . 3
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 22 | 13, 12, 5, 16, 20, 21 | dsmm0cl 21705 |
. 2
⊢ (𝜑 → (0g‘𝑃) ∈ 𝐻) |
| 23 | 5 | 3ad2ant1 1133 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
| 24 | 16 | 3ad2ant1 1133 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑆 ∈ 𝑉) |
| 25 | 20 | 3ad2ant1 1133 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑅:𝐼⟶Mnd) |
| 26 | | simp2 1137 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
| 27 | | simp3 1138 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝐻) |
| 28 | | eqid 2736 |
. . 3
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 29 | 13, 12, 23, 24, 25, 26, 27, 28 | dsmmacl 21706 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → (𝑎(+g‘𝑃)𝑏) ∈ 𝐻) |
| 30 | 13, 5, 16, 4 | prdsgrpd 19038 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑃 ∈ Grp) |
| 32 | 15 | sselda 3963 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ (Base‘𝑃)) |
| 33 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 34 | | eqid 2736 |
. . . . 5
⊢
(invg‘𝑃) = (invg‘𝑃) |
| 35 | 33, 34 | grpinvcl 18975 |
. . . 4
⊢ ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) →
((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
| 36 | 31, 32, 35 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
| 37 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
| 38 | | eqid 2736 |
. . . . . . 7
⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) |
| 39 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
| 40 | 4 | ffnd 6712 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 41 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑅 Fn 𝐼) |
| 42 | 13, 38, 33, 12, 39, 41 | dsmmelbas 21704 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ 𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
| 43 | 37, 42 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin)) |
| 44 | 43 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
| 45 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 46 | 16 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 47 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑅:𝐼⟶Grp) |
| 48 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑃)) |
| 49 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ 𝐼) |
| 50 | 13, 45, 46, 47, 33, 34, 48, 49 | prdsinvgd2 21707 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
| 51 | 50 | adantrr 717 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
| 52 | | fveq2 6881 |
. . . . . . . . 9
⊢ ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
| 53 | 52 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
| 54 | 4 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
| 55 | 54 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
| 56 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅‘𝑏)) = (0g‘(𝑅‘𝑏)) |
| 57 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(invg‘(𝑅‘𝑏)) = (invg‘(𝑅‘𝑏)) |
| 58 | 56, 57 | grpinvid 18987 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑏) ∈ Grp →
((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 59 | 55, 58 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 60 | 59 | adantrr 717 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
| 61 | 51, 53, 60 | 3eqtrd 2775 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏))) |
| 62 | 61 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏)))) |
| 63 | 62 | necon3d 2954 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏)) → (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏)))) |
| 64 | 63 | ss2rabdv 4056 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ⊆ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))}) |
| 65 | 44, 64 | ssfid 9278 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
| 66 | 13, 38, 33, 12, 39, 41 | dsmmelbas 21704 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (((invg‘𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
| 67 | 36, 65, 66 | mpbir2and 713 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ 𝐻) |
| 68 | 1, 2, 3, 15, 22, 29, 67, 30 | issubgrpd2 19130 |
1
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝑃)) |