MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Visualization version   GIF version

Theorem dsmmsubg 20432
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p 𝑃 = (𝑆Xs𝑅)
dsmmsubg.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmsubg.i (𝜑𝐼𝑊)
dsmmsubg.s (𝜑𝑆𝑉)
dsmmsubg.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
dsmmsubg (𝜑𝐻 ∈ (SubGrp‘𝑃))

Proof of Theorem dsmmsubg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . 2 (𝜑 → (𝑃s 𝐻) = (𝑃s 𝐻))
2 eqidd 2799 . 2 (𝜑 → (0g𝑃) = (0g𝑃))
3 eqidd 2799 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
4 dsmmsubg.r . . . . . 6 (𝜑𝑅:𝐼⟶Grp)
5 dsmmsubg.i . . . . . 6 (𝜑𝐼𝑊)
6 fex 6966 . . . . . 6 ((𝑅:𝐼⟶Grp ∧ 𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 587 . . . . 5 (𝜑𝑅 ∈ V)
8 eqid 2798 . . . . . 6 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin}
98dsmmbase 20424 . . . . 5 (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
107, 9syl 17 . . . 4 (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
11 ssrab2 4007 . . . 4 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
1210, 11eqsstrrdi 3970 . . 3 (𝜑 → (Base‘(𝑆m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅)))
13 dsmmsubg.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
14 dsmmsubg.p . . . 4 𝑃 = (𝑆Xs𝑅)
1514fveq2i 6648 . . 3 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
1612, 13, 153sstr4g 3960 . 2 (𝜑𝐻 ⊆ (Base‘𝑃))
17 dsmmsubg.s . . 3 (𝜑𝑆𝑉)
18 grpmnd 18102 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1918ssriv 3919 . . . 4 Grp ⊆ Mnd
20 fss 6501 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
214, 19, 20sylancl 589 . . 3 (𝜑𝑅:𝐼⟶Mnd)
22 eqid 2798 . . 3 (0g𝑃) = (0g𝑃)
2314, 13, 5, 17, 21, 22dsmm0cl 20429 . 2 (𝜑 → (0g𝑃) ∈ 𝐻)
2453ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝐼𝑊)
25173ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑆𝑉)
26213ad2ant1 1130 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑅:𝐼⟶Mnd)
27 simp2 1134 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑎𝐻)
28 simp3 1135 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑏𝐻)
29 eqid 2798 . . 3 (+g𝑃) = (+g𝑃)
3014, 13, 24, 25, 26, 27, 28, 29dsmmacl 20430 . 2 ((𝜑𝑎𝐻𝑏𝐻) → (𝑎(+g𝑃)𝑏) ∈ 𝐻)
3114, 5, 17, 4prdsgrpd 18201 . . . . 5 (𝜑𝑃 ∈ Grp)
3231adantr 484 . . . 4 ((𝜑𝑎𝐻) → 𝑃 ∈ Grp)
3316sselda 3915 . . . 4 ((𝜑𝑎𝐻) → 𝑎 ∈ (Base‘𝑃))
34 eqid 2798 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
35 eqid 2798 . . . . 5 (invg𝑃) = (invg𝑃)
3634, 35grpinvcl 18143 . . . 4 ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
3732, 33, 36syl2anc 587 . . 3 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
38 simpr 488 . . . . . 6 ((𝜑𝑎𝐻) → 𝑎𝐻)
39 eqid 2798 . . . . . . 7 (𝑆m 𝑅) = (𝑆m 𝑅)
405adantr 484 . . . . . . 7 ((𝜑𝑎𝐻) → 𝐼𝑊)
414ffnd 6488 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4241adantr 484 . . . . . . 7 ((𝜑𝑎𝐻) → 𝑅 Fn 𝐼)
4314, 39, 34, 13, 40, 42dsmmelbas 20428 . . . . . 6 ((𝜑𝑎𝐻) → (𝑎𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
4438, 43mpbid 235 . . . . 5 ((𝜑𝑎𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin))
4544simprd 499 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
465ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝐼𝑊)
4717ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑆𝑉)
484ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑅:𝐼⟶Grp)
4933adantr 484 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑎 ∈ (Base‘𝑃))
50 simpr 488 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑏𝐼)
5114, 46, 47, 48, 34, 35, 49, 50prdsinvgd2 20431 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
5251adantrr 716 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
53 fveq2 6645 . . . . . . . . 9 ((𝑎𝑏) = (0g‘(𝑅𝑏)) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
5453ad2antll 728 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
554ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑏𝐼) → (𝑅𝑏) ∈ Grp)
5655adantlr 714 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (𝑅𝑏) ∈ Grp)
57 eqid 2798 . . . . . . . . . . 11 (0g‘(𝑅𝑏)) = (0g‘(𝑅𝑏))
58 eqid 2798 . . . . . . . . . . 11 (invg‘(𝑅𝑏)) = (invg‘(𝑅𝑏))
5957, 58grpinvid 18152 . . . . . . . . . 10 ((𝑅𝑏) ∈ Grp → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6056, 59syl 17 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6160adantrr 716 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6252, 54, 613eqtrd 2837 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏)))
6362expr 460 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((𝑎𝑏) = (0g‘(𝑅𝑏)) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏))))
6463necon3d 3008 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏)) → (𝑎𝑏) ≠ (0g‘(𝑅𝑏))))
6564ss2rabdv 4003 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ⊆ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))})
6645, 65ssfid 8725 . . 3 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
6714, 39, 34, 13, 40, 42dsmmelbas 20428 . . 3 ((𝜑𝑎𝐻) → (((invg𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
6837, 66, 67mpbir2and 712 . 2 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ 𝐻)
691, 2, 3, 16, 23, 30, 68, 31issubgrpd2 18287 1 (𝜑𝐻 ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  wss 3881  dom cdm 5519   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  s cress 16476  +gcplusg 16557  0gc0g 16705  Xscprds 16711  Mndcmnd 17903  Grpcgrp 18095  invgcminusg 18096  SubGrpcsubg 18265  m cdsmm 20420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-dsmm 20421
This theorem is referenced by:  dsmmlss  20433
  Copyright terms: Public domain W3C validator