MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmsubg Structured version   Visualization version   GIF version

Theorem dsmmsubg 21628
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmsubg.p 𝑃 = (𝑆Xs𝑅)
dsmmsubg.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmsubg.i (𝜑𝐼𝑊)
dsmmsubg.s (𝜑𝑆𝑉)
dsmmsubg.r (𝜑𝑅:𝐼⟶Grp)
Assertion
Ref Expression
dsmmsubg (𝜑𝐻 ∈ (SubGrp‘𝑃))

Proof of Theorem dsmmsubg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (𝑃s 𝐻) = (𝑃s 𝐻))
2 eqidd 2730 . 2 (𝜑 → (0g𝑃) = (0g𝑃))
3 eqidd 2730 . 2 (𝜑 → (+g𝑃) = (+g𝑃))
4 dsmmsubg.r . . . . . 6 (𝜑𝑅:𝐼⟶Grp)
5 dsmmsubg.i . . . . . 6 (𝜑𝐼𝑊)
64, 5fexd 7183 . . . . 5 (𝜑𝑅 ∈ V)
7 eqid 2729 . . . . . 6 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin}
87dsmmbase 21620 . . . . 5 (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
96, 8syl 17 . . . 4 (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
10 ssrab2 4039 . . . 4 {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅))
119, 10eqsstrrdi 3989 . . 3 (𝜑 → (Base‘(𝑆m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅)))
12 dsmmsubg.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
13 dsmmsubg.p . . . 4 𝑃 = (𝑆Xs𝑅)
1413fveq2i 6843 . . 3 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
1511, 12, 143sstr4g 3997 . 2 (𝜑𝐻 ⊆ (Base‘𝑃))
16 dsmmsubg.s . . 3 (𝜑𝑆𝑉)
17 grpmnd 18848 . . . . 5 (𝑎 ∈ Grp → 𝑎 ∈ Mnd)
1817ssriv 3947 . . . 4 Grp ⊆ Mnd
19 fss 6686 . . . 4 ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
204, 18, 19sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
21 eqid 2729 . . 3 (0g𝑃) = (0g𝑃)
2213, 12, 5, 16, 20, 21dsmm0cl 21625 . 2 (𝜑 → (0g𝑃) ∈ 𝐻)
2353ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝐼𝑊)
24163ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑆𝑉)
25203ad2ant1 1133 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑅:𝐼⟶Mnd)
26 simp2 1137 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑎𝐻)
27 simp3 1138 . . 3 ((𝜑𝑎𝐻𝑏𝐻) → 𝑏𝐻)
28 eqid 2729 . . 3 (+g𝑃) = (+g𝑃)
2913, 12, 23, 24, 25, 26, 27, 28dsmmacl 21626 . 2 ((𝜑𝑎𝐻𝑏𝐻) → (𝑎(+g𝑃)𝑏) ∈ 𝐻)
3013, 5, 16, 4prdsgrpd 18958 . . . . 5 (𝜑𝑃 ∈ Grp)
3130adantr 480 . . . 4 ((𝜑𝑎𝐻) → 𝑃 ∈ Grp)
3215sselda 3943 . . . 4 ((𝜑𝑎𝐻) → 𝑎 ∈ (Base‘𝑃))
33 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
34 eqid 2729 . . . . 5 (invg𝑃) = (invg𝑃)
3533, 34grpinvcl 18895 . . . 4 ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
3631, 32, 35syl2anc 584 . . 3 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ (Base‘𝑃))
37 simpr 484 . . . . . 6 ((𝜑𝑎𝐻) → 𝑎𝐻)
38 eqid 2729 . . . . . . 7 (𝑆m 𝑅) = (𝑆m 𝑅)
395adantr 480 . . . . . . 7 ((𝜑𝑎𝐻) → 𝐼𝑊)
404ffnd 6671 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4140adantr 480 . . . . . . 7 ((𝜑𝑎𝐻) → 𝑅 Fn 𝐼)
4213, 38, 33, 12, 39, 41dsmmelbas 21624 . . . . . 6 ((𝜑𝑎𝐻) → (𝑎𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
4337, 42mpbid 232 . . . . 5 ((𝜑𝑎𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin))
4443simprd 495 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
455ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝐼𝑊)
4616ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑆𝑉)
474ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑅:𝐼⟶Grp)
4832adantr 480 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑎 ∈ (Base‘𝑃))
49 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → 𝑏𝐼)
5013, 45, 46, 47, 33, 34, 48, 49prdsinvgd2 21627 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
5150adantrr 717 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅𝑏))‘(𝑎𝑏)))
52 fveq2 6840 . . . . . . . . 9 ((𝑎𝑏) = (0g‘(𝑅𝑏)) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
5352ad2antll 729 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(𝑎𝑏)) = ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))))
544ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑏𝐼) → (𝑅𝑏) ∈ Grp)
5554adantlr 715 . . . . . . . . . 10 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → (𝑅𝑏) ∈ Grp)
56 eqid 2729 . . . . . . . . . . 11 (0g‘(𝑅𝑏)) = (0g‘(𝑅𝑏))
57 eqid 2729 . . . . . . . . . . 11 (invg‘(𝑅𝑏)) = (invg‘(𝑅𝑏))
5856, 57grpinvid 18907 . . . . . . . . . 10 ((𝑅𝑏) ∈ Grp → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
5955, 58syl 17 . . . . . . . . 9 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6059adantrr 717 . . . . . . . 8 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → ((invg‘(𝑅𝑏))‘(0g‘(𝑅𝑏))) = (0g‘(𝑅𝑏)))
6151, 53, 603eqtrd 2768 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑏𝐼 ∧ (𝑎𝑏) = (0g‘(𝑅𝑏)))) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏)))
6261expr 456 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((𝑎𝑏) = (0g‘(𝑅𝑏)) → (((invg𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅𝑏))))
6362necon3d 2946 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑏𝐼) → ((((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏)) → (𝑎𝑏) ≠ (0g‘(𝑅𝑏))))
6463ss2rabdv 4035 . . . 4 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ⊆ {𝑏𝐼 ∣ (𝑎𝑏) ≠ (0g‘(𝑅𝑏))})
6544, 64ssfid 9188 . . 3 ((𝜑𝑎𝐻) → {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)
6613, 38, 33, 12, 39, 41dsmmelbas 21624 . . 3 ((𝜑𝑎𝐻) → (((invg𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏𝐼 ∣ (((invg𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅𝑏))} ∈ Fin)))
6736, 65, 66mpbir2and 713 . 2 ((𝜑𝑎𝐻) → ((invg𝑃)‘𝑎) ∈ 𝐻)
681, 2, 3, 15, 22, 29, 67, 30issubgrpd2 19050 1 (𝜑𝐻 ∈ (SubGrp‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402  Vcvv 3444  wss 3911  dom cdm 5631   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378  Xscprds 17384  Mndcmnd 18637  Grpcgrp 18841  invgcminusg 18842  SubGrpcsubg 19028  m cdsmm 21616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-dsmm 21617
This theorem is referenced by:  dsmmlss  21629
  Copyright terms: Public domain W3C validator