Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ (𝜑 → (𝑃 ↾s 𝐻) = (𝑃 ↾s 𝐻)) |
2 | | eqidd 2739 |
. 2
⊢ (𝜑 → (0g‘𝑃) = (0g‘𝑃)) |
3 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝑃) = (+g‘𝑃)) |
4 | | dsmmsubg.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
5 | | dsmmsubg.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
6 | 4, 5 | fexd 7103 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
7 | | eqid 2738 |
. . . . . 6
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} |
8 | 7 | dsmmbase 20942 |
. . . . 5
⊢ (𝑅 ∈ V → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
9 | 6, 8 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
10 | | ssrab2 4013 |
. . . 4
⊢ {𝑎 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑏 ∈ dom 𝑅 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin} ⊆ (Base‘(𝑆Xs𝑅)) |
11 | 9, 10 | eqsstrrdi 3976 |
. . 3
⊢ (𝜑 → (Base‘(𝑆 ⊕m 𝑅)) ⊆ (Base‘(𝑆Xs𝑅))) |
12 | | dsmmsubg.h |
. . 3
⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
13 | | dsmmsubg.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
14 | 13 | fveq2i 6777 |
. . 3
⊢
(Base‘𝑃) =
(Base‘(𝑆Xs𝑅)) |
15 | 11, 12, 14 | 3sstr4g 3966 |
. 2
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝑃)) |
16 | | dsmmsubg.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
17 | | grpmnd 18584 |
. . . . 5
⊢ (𝑎 ∈ Grp → 𝑎 ∈ Mnd) |
18 | 17 | ssriv 3925 |
. . . 4
⊢ Grp
⊆ Mnd |
19 | | fss 6617 |
. . . 4
⊢ ((𝑅:𝐼⟶Grp ∧ Grp ⊆ Mnd) →
𝑅:𝐼⟶Mnd) |
20 | 4, 18, 19 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
21 | | eqid 2738 |
. . 3
⊢
(0g‘𝑃) = (0g‘𝑃) |
22 | 13, 12, 5, 16, 20, 21 | dsmm0cl 20947 |
. 2
⊢ (𝜑 → (0g‘𝑃) ∈ 𝐻) |
23 | 5 | 3ad2ant1 1132 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
24 | 16 | 3ad2ant1 1132 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑆 ∈ 𝑉) |
25 | 20 | 3ad2ant1 1132 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑅:𝐼⟶Mnd) |
26 | | simp2 1136 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
27 | | simp3 1137 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → 𝑏 ∈ 𝐻) |
28 | | eqid 2738 |
. . 3
⊢
(+g‘𝑃) = (+g‘𝑃) |
29 | 13, 12, 23, 24, 25, 26, 27, 28 | dsmmacl 20948 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻) → (𝑎(+g‘𝑃)𝑏) ∈ 𝐻) |
30 | 13, 5, 16, 4 | prdsgrpd 18685 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
31 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑃 ∈ Grp) |
32 | 15 | sselda 3921 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ (Base‘𝑃)) |
33 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
34 | | eqid 2738 |
. . . . 5
⊢
(invg‘𝑃) = (invg‘𝑃) |
35 | 33, 34 | grpinvcl 18627 |
. . . 4
⊢ ((𝑃 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑃)) →
((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
36 | 31, 32, 35 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃)) |
37 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ 𝐻) |
38 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) |
39 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐼 ∈ 𝑊) |
40 | 4 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
41 | 40 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑅 Fn 𝐼) |
42 | 13, 38, 33, 12, 39, 41 | dsmmelbas 20946 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ 𝐻 ↔ (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
43 | 37, 42 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑎 ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin)) |
44 | 43 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
45 | 5 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
46 | 16 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
47 | 4 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑅:𝐼⟶Grp) |
48 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑃)) |
49 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ 𝐼) |
50 | 13, 45, 46, 47, 33, 34, 48, 49 | prdsinvgd2 20949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
51 | 50 | adantrr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏))) |
52 | | fveq2 6774 |
. . . . . . . . 9
⊢ ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
53 | 52 | ad2antll 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(𝑎‘𝑏)) = ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏)))) |
54 | 4 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
55 | 54 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → (𝑅‘𝑏) ∈ Grp) |
56 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅‘𝑏)) = (0g‘(𝑅‘𝑏)) |
57 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(invg‘(𝑅‘𝑏)) = (invg‘(𝑅‘𝑏)) |
58 | 56, 57 | grpinvid 18636 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑏) ∈ Grp →
((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
59 | 55, 58 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
60 | 59 | adantrr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → ((invg‘(𝑅‘𝑏))‘(0g‘(𝑅‘𝑏))) = (0g‘(𝑅‘𝑏))) |
61 | 51, 53, 60 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑏 ∈ 𝐼 ∧ (𝑎‘𝑏) = (0g‘(𝑅‘𝑏)))) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏))) |
62 | 61 | expr 457 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((𝑎‘𝑏) = (0g‘(𝑅‘𝑏)) → (((invg‘𝑃)‘𝑎)‘𝑏) = (0g‘(𝑅‘𝑏)))) |
63 | 62 | necon3d 2964 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑏 ∈ 𝐼) → ((((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏)) → (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏)))) |
64 | 63 | ss2rabdv 4009 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ⊆ {𝑏 ∈ 𝐼 ∣ (𝑎‘𝑏) ≠ (0g‘(𝑅‘𝑏))}) |
65 | 44, 64 | ssfid 9042 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin) |
66 | 13, 38, 33, 12, 39, 41 | dsmmelbas 20946 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (((invg‘𝑃)‘𝑎) ∈ 𝐻 ↔ (((invg‘𝑃)‘𝑎) ∈ (Base‘𝑃) ∧ {𝑏 ∈ 𝐼 ∣ (((invg‘𝑃)‘𝑎)‘𝑏) ≠ (0g‘(𝑅‘𝑏))} ∈ Fin))) |
67 | 36, 65, 66 | mpbir2and 710 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((invg‘𝑃)‘𝑎) ∈ 𝐻) |
68 | 1, 2, 3, 15, 22, 29, 67, 30 | issubgrpd2 18771 |
1
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝑃)) |