MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemq Structured version   Visualization version   GIF version

Theorem pntlemq 26104
Description: Lemma for pntlemj 26106. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemq (𝜑𝐼𝑂)
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemq
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 26100 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1134 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26098 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1918simp2d 1135 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
20 pntlem1.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (𝑀..^𝑁))
21 elfzoelz 13026 . . . . . . . . . . 11 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
2322peano2zd 12078 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
2419, 23rpexpcld 13596 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
2517, 24rpdivcld 12436 . . . . . . 7 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
2625rpred 12419 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ)
2726flcld 13156 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ)
28 1rp 12381 . . . . . . . . . 10 1 ∈ ℝ+
291, 2, 3, 4, 5, 6pntlemd 26097 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3029simp1d 1134 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3118simp1d 1134 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
3230, 31rpmulcld 12435 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
33 rpaddcl 12399 . . . . . . . . . 10 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
3428, 32, 33sylancr 587 . . . . . . . . 9 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
35 pntlem1.v . . . . . . . . 9 (𝜑𝑉 ∈ ℝ+)
3634, 35rpmulcld 12435 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
3717, 36rpdivcld 12436 . . . . . . 7 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
3837rpred 12419 . . . . . 6 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
3938flcld 13156 . . . . 5 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ)
4036rpred 12419 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
4124rpred 12419 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
42 pntlem1.V . . . . . . . . . . 11 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4342simpld 495 . . . . . . . . . 10 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
4443simprd 496 . . . . . . . . 9 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
4519rpcnd 12421 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
4619, 22rpexpcld 13596 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ+)
4746rpcnd 12421 . . . . . . . . . . 11 (𝜑 → (𝐾𝐽) ∈ ℂ)
4845, 47mulcomd 10650 . . . . . . . . . 10 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
49 pntlem1.m . . . . . . . . . . . . . . 15 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
50 pntlem1.n . . . . . . . . . . . . . . 15 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49, 50pntlemg 26101 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5251simp1d 1134 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
53 elfzouz 13030 . . . . . . . . . . . . . 14 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
5420, 53syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (ℤ𝑀))
55 eluznn 12306 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
5652, 54, 55syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ)
5756nnnn0d 11943 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℕ0)
5845, 57expp1d 13499 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
5948, 58eqtr4d 2856 . . . . . . . . 9 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
6044, 59breqtrd 5083 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
6140, 41, 60ltled 10776 . . . . . . 7 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
6236, 24, 17lediv2d 12443 . . . . . . 7 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)) ↔ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6361, 62mpbid 233 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
64 flwordi 13170 . . . . . 6 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6526, 38, 63, 64syl3anc 1363 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
66 eluz2 12237 . . . . 5 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) ↔ ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ ∧ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
6727, 39, 65, 66syl3anbrc 1335 . . . 4 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))))
68 eluzp1p1 12258 . . . 4 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
69 fzss1 12934 . . . 4 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)) → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7067, 68, 693syl 18 . . 3 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7117, 35rpdivcld 12436 . . . . . . 7 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
7271rpred 12419 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
7372flcld 13156 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
7417, 46rpdivcld 12436 . . . . . . 7 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
7574rpred 12419 . . . . . 6 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
7675flcld 13156 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ)
7746rpred 12419 . . . . . . . 8 (𝜑 → (𝐾𝐽) ∈ ℝ)
7835rpred 12419 . . . . . . . 8 (𝜑𝑉 ∈ ℝ)
7943simpld 495 . . . . . . . 8 (𝜑 → (𝐾𝐽) < 𝑉)
8077, 78, 79ltled 10776 . . . . . . 7 (𝜑 → (𝐾𝐽) ≤ 𝑉)
8146, 35, 17lediv2d 12443 . . . . . . 7 (𝜑 → ((𝐾𝐽) ≤ 𝑉 ↔ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))))
8280, 81mpbid 233 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽)))
83 flwordi 13170 . . . . . 6 (((𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / (𝐾𝐽)) ∈ ℝ ∧ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))) → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
8472, 75, 82, 83syl3anc 1363 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
85 eluz2 12237 . . . . 5 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) ↔ ((⌊‘(𝑍 / 𝑉)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
8673, 76, 84, 85syl3anbrc 1335 . . . 4 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))))
87 fzss2 12935 . . . 4 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8886, 87syl 17 . . 3 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8970, 88sstrd 3974 . 2 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
90 pntlem1.i . 2 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
91 pntlem1.o . 2 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
9289, 90, 913sstr4g 4009 1 (𝜑𝐼𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  wss 3933   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  3c3 11681  4c4 11682  cz 11969  cdc 12086  cuz 12231  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  ...cfz 12880  ..^cfzo 13021  cfl 13148  cexp 13417  csqrt 14580  abscabs 14581  expce 15403  eceu 15404  logclog 25065  ψcchp 25597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-e 15410  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067
This theorem is referenced by:  pntlemj  26106
  Copyright terms: Public domain W3C validator