MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemq Structured version   Visualization version   GIF version

Theorem pntlemq 27554
Description: Lemma for pntlemj 27556. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemq (𝜑𝐼𝑂)
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemq
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 27550 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1139 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27548 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1918simp2d 1140 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
20 pntlem1.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (𝑀..^𝑁))
21 elfzoelz 13672 . . . . . . . . . . 11 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
2322peano2zd 12707 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
2419, 23rpexpcld 14249 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
2517, 24rpdivcld 13073 . . . . . . 7 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
2625rpred 13056 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ)
2726flcld 13803 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ)
28 1rp 13018 . . . . . . . . . 10 1 ∈ ℝ+
291, 2, 3, 4, 5, 6pntlemd 27547 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3029simp1d 1139 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3118simp1d 1139 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
3230, 31rpmulcld 13072 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
33 rpaddcl 13036 . . . . . . . . . 10 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
3428, 32, 33sylancr 585 . . . . . . . . 9 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
35 pntlem1.v . . . . . . . . 9 (𝜑𝑉 ∈ ℝ+)
3634, 35rpmulcld 13072 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
3717, 36rpdivcld 13073 . . . . . . 7 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
3837rpred 13056 . . . . . 6 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
3938flcld 13803 . . . . 5 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ)
4036rpred 13056 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
4124rpred 13056 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
42 pntlem1.V . . . . . . . . . . 11 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4342simpld 493 . . . . . . . . . 10 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
4443simprd 494 . . . . . . . . 9 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
4519rpcnd 13058 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
4619, 22rpexpcld 14249 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ+)
4746rpcnd 13058 . . . . . . . . . . 11 (𝜑 → (𝐾𝐽) ∈ ℂ)
4845, 47mulcomd 11273 . . . . . . . . . 10 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
49 pntlem1.m . . . . . . . . . . . . . . 15 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
50 pntlem1.n . . . . . . . . . . . . . . 15 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49, 50pntlemg 27551 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5251simp1d 1139 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
53 elfzouz 13676 . . . . . . . . . . . . . 14 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
5420, 53syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (ℤ𝑀))
55 eluznn 12940 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
5652, 54, 55syl2anc 582 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ)
5756nnnn0d 12570 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℕ0)
5845, 57expp1d 14151 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
5948, 58eqtr4d 2771 . . . . . . . . 9 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
6044, 59breqtrd 5178 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
6140, 41, 60ltled 11400 . . . . . . 7 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
6236, 24, 17lediv2d 13080 . . . . . . 7 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)) ↔ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6361, 62mpbid 231 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
64 flwordi 13817 . . . . . 6 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6526, 38, 63, 64syl3anc 1368 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
66 eluz2 12866 . . . . 5 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) ↔ ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ ∧ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
6727, 39, 65, 66syl3anbrc 1340 . . . 4 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))))
68 eluzp1p1 12888 . . . 4 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
69 fzss1 13580 . . . 4 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)) → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7067, 68, 693syl 18 . . 3 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7117, 35rpdivcld 13073 . . . . . . 7 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
7271rpred 13056 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
7372flcld 13803 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
7417, 46rpdivcld 13073 . . . . . . 7 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
7574rpred 13056 . . . . . 6 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
7675flcld 13803 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ)
7746rpred 13056 . . . . . . . 8 (𝜑 → (𝐾𝐽) ∈ ℝ)
7835rpred 13056 . . . . . . . 8 (𝜑𝑉 ∈ ℝ)
7943simpld 493 . . . . . . . 8 (𝜑 → (𝐾𝐽) < 𝑉)
8077, 78, 79ltled 11400 . . . . . . 7 (𝜑 → (𝐾𝐽) ≤ 𝑉)
8146, 35, 17lediv2d 13080 . . . . . . 7 (𝜑 → ((𝐾𝐽) ≤ 𝑉 ↔ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))))
8280, 81mpbid 231 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽)))
83 flwordi 13817 . . . . . 6 (((𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / (𝐾𝐽)) ∈ ℝ ∧ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))) → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
8472, 75, 82, 83syl3anc 1368 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
85 eluz2 12866 . . . . 5 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) ↔ ((⌊‘(𝑍 / 𝑉)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
8673, 76, 84, 85syl3anbrc 1340 . . . 4 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))))
87 fzss2 13581 . . . 4 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8886, 87syl 17 . . 3 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8970, 88sstrd 3992 . 2 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
90 pntlem1.i . 2 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
91 pntlem1.o . 2 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
9289, 90, 913sstr4g 4027 1 (𝜑𝐼𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067  wss 3949   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7426  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  +∞cpnf 11283   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  cn 12250  2c2 12305  3c3 12306  4c4 12307  cz 12596  cdc 12715  cuz 12860  +crp 13014  (,)cioo 13364  [,)cico 13366  [,]cicc 13367  ...cfz 13524  ..^cfzo 13667  cfl 13795  cexp 14066  csqrt 15220  abscabs 15221  expce 16045  eceu 16046  logclog 26508  ψcchp 27045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-e 16052  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510
This theorem is referenced by:  pntlemj  27556
  Copyright terms: Public domain W3C validator