MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemq Structured version   Visualization version   GIF version

Theorem pntlemq 27564
Description: Lemma for pntlemj 27566. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemq (𝜑𝐼𝑂)
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemq
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 27560 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27558 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1918simp2d 1143 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
20 pntlem1.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (𝑀..^𝑁))
21 elfzoelz 13676 . . . . . . . . . . 11 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
2322peano2zd 12700 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
2419, 23rpexpcld 14265 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
2517, 24rpdivcld 13068 . . . . . . 7 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ+)
2625rpred 13051 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ)
2726flcld 13815 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ)
28 1rp 13012 . . . . . . . . . 10 1 ∈ ℝ+
291, 2, 3, 4, 5, 6pntlemd 27557 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3029simp1d 1142 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3118simp1d 1142 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
3230, 31rpmulcld 13067 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
33 rpaddcl 13031 . . . . . . . . . 10 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
3428, 32, 33sylancr 587 . . . . . . . . 9 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
35 pntlem1.v . . . . . . . . 9 (𝜑𝑉 ∈ ℝ+)
3634, 35rpmulcld 13067 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
3717, 36rpdivcld 13068 . . . . . . 7 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
3837rpred 13051 . . . . . 6 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
3938flcld 13815 . . . . 5 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ)
4036rpred 13051 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
4124rpred 13051 . . . . . . . 8 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
42 pntlem1.V . . . . . . . . . . 11 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
4342simpld 494 . . . . . . . . . 10 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
4443simprd 495 . . . . . . . . 9 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
4519rpcnd 13053 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
4619, 22rpexpcld 14265 . . . . . . . . . . . 12 (𝜑 → (𝐾𝐽) ∈ ℝ+)
4746rpcnd 13053 . . . . . . . . . . 11 (𝜑 → (𝐾𝐽) ∈ ℂ)
4845, 47mulcomd 11256 . . . . . . . . . 10 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
49 pntlem1.m . . . . . . . . . . . . . . 15 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
50 pntlem1.n . . . . . . . . . . . . . . 15 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49, 50pntlemg 27561 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5251simp1d 1142 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
53 elfzouz 13680 . . . . . . . . . . . . . 14 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
5420, 53syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (ℤ𝑀))
55 eluznn 12934 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
5652, 54, 55syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℕ)
5756nnnn0d 12562 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℕ0)
5845, 57expp1d 14165 . . . . . . . . . 10 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
5948, 58eqtr4d 2773 . . . . . . . . 9 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
6044, 59breqtrd 5145 . . . . . . . 8 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
6140, 41, 60ltled 11383 . . . . . . 7 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
6236, 24, 17lediv2d 13075 . . . . . . 7 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)) ↔ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6361, 62mpbid 232 . . . . . 6 (𝜑 → (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
64 flwordi 13829 . . . . . 6 (((𝑍 / (𝐾↑(𝐽 + 1))) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝐽 + 1))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
6526, 38, 63, 64syl3anc 1373 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
66 eluz2 12858 . . . . 5 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) ↔ ((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ∈ ℤ ∧ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) ≤ (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
6727, 39, 65, 66syl3anbrc 1344 . . . 4 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))))
68 eluzp1p1 12880 . . . 4 ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝐽 + 1))))) → ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)))
69 fzss1 13580 . . . 4 (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)) → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7067, 68, 693syl 18 . . 3 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))))
7117, 35rpdivcld 13068 . . . . . . 7 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
7271rpred 13051 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
7372flcld 13815 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
7417, 46rpdivcld 13068 . . . . . . 7 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ+)
7574rpred 13051 . . . . . 6 (𝜑 → (𝑍 / (𝐾𝐽)) ∈ ℝ)
7675flcld 13815 . . . . 5 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ)
7746rpred 13051 . . . . . . . 8 (𝜑 → (𝐾𝐽) ∈ ℝ)
7835rpred 13051 . . . . . . . 8 (𝜑𝑉 ∈ ℝ)
7943simpld 494 . . . . . . . 8 (𝜑 → (𝐾𝐽) < 𝑉)
8077, 78, 79ltled 11383 . . . . . . 7 (𝜑 → (𝐾𝐽) ≤ 𝑉)
8146, 35, 17lediv2d 13075 . . . . . . 7 (𝜑 → ((𝐾𝐽) ≤ 𝑉 ↔ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))))
8280, 81mpbid 232 . . . . . 6 (𝜑 → (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽)))
83 flwordi 13829 . . . . . 6 (((𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / (𝐾𝐽)) ∈ ℝ ∧ (𝑍 / 𝑉) ≤ (𝑍 / (𝐾𝐽))) → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
8472, 75, 82, 83syl3anc 1373 . . . . 5 (𝜑 → (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽))))
85 eluz2 12858 . . . . 5 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) ↔ ((⌊‘(𝑍 / 𝑉)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝐽))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑉)) ≤ (⌊‘(𝑍 / (𝐾𝐽)))))
8673, 76, 84, 85syl3anbrc 1344 . . . 4 (𝜑 → (⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))))
87 fzss2 13581 . . . 4 ((⌊‘(𝑍 / (𝐾𝐽))) ∈ (ℤ‘(⌊‘(𝑍 / 𝑉))) → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8886, 87syl 17 . . 3 (𝜑 → (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
8970, 88sstrd 3969 . 2 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽)))))
90 pntlem1.i . 2 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
91 pntlem1.o . 2 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
9289, 90, 913sstr4g 4012 1 (𝜑𝐼𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  3c3 12296  4c4 12297  cz 12588  cdc 12708  cuz 12852  +crp 13008  (,)cioo 13362  [,)cico 13364  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  cfl 13807  cexp 14079  csqrt 15252  abscabs 15253  expce 16077  eceu 16078  logclog 26515  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517
This theorem is referenced by:  pntlemj  27566
  Copyright terms: Public domain W3C validator