| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13345 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 |
| This theorem is referenced by: nn0rp0 13355 rge0ssre 13356 0e0icopnf 13358 ge0addcl 13360 ge0mulcl 13361 fsumge0 15702 fprodge0 15900 isabvd 20727 abvge0 20732 nmolb 24632 nmoge0 24636 nmoi 24643 icopnfcnv 24867 cphsqrtcl 25111 tcphcph 25164 cphsscph 25178 ovolfsf 25399 ovolmge0 25405 ovolunlem1a 25424 ovoliunlem1 25430 ovolicc2lem4 25448 ioombl1lem4 25489 uniioombllem2 25511 uniioombllem6 25516 0plef 25600 i1fpos 25634 mbfi1fseqlem1 25643 mbfi1fseqlem3 25645 mbfi1fseqlem4 25646 mbfi1fseqlem5 25647 mbfi1fseqlem6 25648 mbfi1flimlem 25650 itg2const 25668 itg2const2 25669 itg2mulclem 25674 itg2mulc 25675 itg2monolem1 25678 itg2mono 25681 itg2addlem 25686 itg2gt0 25688 itg2cnlem1 25689 itg2cnlem2 25690 itg2cn 25691 iblconst 25746 itgconst 25747 ibladdlem 25748 itgaddlem1 25751 iblabslem 25756 iblabs 25757 iblmulc2 25759 itgmulc2lem1 25760 bddmulibl 25767 bddiblnc 25770 itggt0 25772 itgcn 25773 dvge0 25938 dvle 25939 dvfsumrlim 25965 cxpcn3lem 26684 cxpcn3 26685 resqrtcn 26686 loglesqrt 26698 areaf 26898 areacl 26899 areage0 26900 rlimcnp3 26904 jensenlem2 26925 jensen 26926 amgmlem 26927 amgm 26928 dchrisumlem3 27429 dchrmusumlema 27431 dchrmusum2 27432 dchrvmasumlem2 27436 dchrvmasumiflem1 27439 dchrisum0lema 27452 dchrisum0lem1b 27453 dchrisum0lem1 27454 dchrisum0lem2 27456 axcontlem2 28943 axcontlem7 28948 axcontlem8 28949 axcontlem10 28951 rge0scvg 33962 esumpcvgval 34091 hasheuni 34098 esumcvg 34099 sibfof 34353 mbfposadd 37717 itg2addnclem2 37722 itg2addnclem3 37723 itg2addnc 37724 itg2gt0cn 37725 ibladdnclem 37726 itgaddnclem1 37728 iblabsnclem 37733 iblabsnc 37734 iblmulc2nc 37735 itgmulc2nclem1 37736 itggt0cn 37740 ftc1anclem3 37745 ftc1anclem4 37746 ftc1anclem5 37747 ftc1anclem6 37748 ftc1anclem7 37749 ftc1anclem8 37750 areacirclem2 37759 sge0iunmptlemfi 46521 digvalnn0 48710 nn0digval 48711 dignn0fr 48712 dig2nn1st 48716 digexp 48718 2sphere 48860 itsclc0 48882 itsclc0b 48883 |
| Copyright terms: Public domain | W3C validator |