| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13382 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 [,)cico 13284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 |
| This theorem is referenced by: nn0rp0 13392 rge0ssre 13393 0e0icopnf 13395 ge0addcl 13397 ge0mulcl 13398 fsumge0 15737 fprodge0 15935 isabvd 20732 abvge0 20737 nmolb 24638 nmoge0 24642 nmoi 24649 icopnfcnv 24873 cphsqrtcl 25117 tcphcph 25170 cphsscph 25184 ovolfsf 25405 ovolmge0 25411 ovolunlem1a 25430 ovoliunlem1 25436 ovolicc2lem4 25454 ioombl1lem4 25495 uniioombllem2 25517 uniioombllem6 25522 0plef 25606 i1fpos 25640 mbfi1fseqlem1 25649 mbfi1fseqlem3 25651 mbfi1fseqlem4 25652 mbfi1fseqlem5 25653 mbfi1fseqlem6 25654 mbfi1flimlem 25656 itg2const 25674 itg2const2 25675 itg2mulclem 25680 itg2mulc 25681 itg2monolem1 25684 itg2mono 25687 itg2addlem 25692 itg2gt0 25694 itg2cnlem1 25695 itg2cnlem2 25696 itg2cn 25697 iblconst 25752 itgconst 25753 ibladdlem 25754 itgaddlem1 25757 iblabslem 25762 iblabs 25763 iblmulc2 25765 itgmulc2lem1 25766 bddmulibl 25773 bddiblnc 25776 itggt0 25778 itgcn 25779 dvge0 25944 dvle 25945 dvfsumrlim 25971 cxpcn3lem 26690 cxpcn3 26691 resqrtcn 26692 loglesqrt 26704 areaf 26904 areacl 26905 areage0 26906 rlimcnp3 26910 jensenlem2 26931 jensen 26932 amgmlem 26933 amgm 26934 dchrisumlem3 27435 dchrmusumlema 27437 dchrmusum2 27438 dchrvmasumlem2 27442 dchrvmasumiflem1 27445 dchrisum0lema 27458 dchrisum0lem1b 27459 dchrisum0lem1 27460 dchrisum0lem2 27462 axcontlem2 28945 axcontlem7 28950 axcontlem8 28951 axcontlem10 28953 rge0scvg 33932 esumpcvgval 34061 hasheuni 34068 esumcvg 34069 sibfof 34324 mbfposadd 37654 itg2addnclem2 37659 itg2addnclem3 37660 itg2addnc 37661 itg2gt0cn 37662 ibladdnclem 37663 itgaddnclem1 37665 iblabsnclem 37670 iblabsnc 37671 iblmulc2nc 37672 itgmulc2nclem1 37673 itggt0cn 37677 ftc1anclem3 37682 ftc1anclem4 37683 ftc1anclem5 37684 ftc1anclem6 37685 ftc1anclem7 37686 ftc1anclem8 37687 areacirclem2 37696 sge0iunmptlemfi 46404 digvalnn0 48581 nn0digval 48582 dignn0fr 48583 dig2nn1st 48587 digexp 48589 2sphere 48731 itsclc0 48753 itsclc0b 48754 |
| Copyright terms: Public domain | W3C validator |