| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11245 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13467 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 0cc0 11137 +∞cpnf 11274 ≤ cle 11278 [,)cico 13371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-addrcl 11198 ax-rnegex 11208 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-ico 13375 |
| This theorem is referenced by: nn0rp0 13477 rge0ssre 13478 0e0icopnf 13480 ge0addcl 13482 ge0mulcl 13483 fsumge0 15813 fprodge0 16011 isabvd 20781 abvge0 20786 nmolb 24674 nmoge0 24678 nmoi 24685 icopnfcnv 24909 cphsqrtcl 25154 tcphcph 25207 cphsscph 25221 ovolfsf 25442 ovolmge0 25448 ovolunlem1a 25467 ovoliunlem1 25473 ovolicc2lem4 25491 ioombl1lem4 25532 uniioombllem2 25554 uniioombllem6 25559 0plef 25643 i1fpos 25677 mbfi1fseqlem1 25686 mbfi1fseqlem3 25688 mbfi1fseqlem4 25689 mbfi1fseqlem5 25690 mbfi1fseqlem6 25691 mbfi1flimlem 25693 itg2const 25711 itg2const2 25712 itg2mulclem 25717 itg2mulc 25718 itg2monolem1 25721 itg2mono 25724 itg2addlem 25729 itg2gt0 25731 itg2cnlem1 25732 itg2cnlem2 25733 itg2cn 25734 iblconst 25789 itgconst 25790 ibladdlem 25791 itgaddlem1 25794 iblabslem 25799 iblabs 25800 iblmulc2 25802 itgmulc2lem1 25803 bddmulibl 25810 bddiblnc 25813 itggt0 25815 itgcn 25816 dvge0 25981 dvle 25982 dvfsumrlim 26008 cxpcn3lem 26726 cxpcn3 26727 resqrtcn 26728 loglesqrt 26740 areaf 26940 areacl 26941 areage0 26942 rlimcnp3 26946 jensenlem2 26967 jensen 26968 amgmlem 26969 amgm 26970 dchrisumlem3 27471 dchrmusumlema 27473 dchrmusum2 27474 dchrvmasumlem2 27478 dchrvmasumiflem1 27481 dchrisum0lema 27494 dchrisum0lem1b 27495 dchrisum0lem1 27496 dchrisum0lem2 27498 axcontlem2 28910 axcontlem7 28915 axcontlem8 28916 axcontlem10 28918 rge0scvg 33907 esumpcvgval 34038 hasheuni 34045 esumcvg 34046 sibfof 34301 mbfposadd 37633 itg2addnclem2 37638 itg2addnclem3 37639 itg2addnc 37640 itg2gt0cn 37641 ibladdnclem 37642 itgaddnclem1 37644 iblabsnclem 37649 iblabsnc 37650 iblmulc2nc 37651 itgmulc2nclem1 37652 itggt0cn 37656 ftc1anclem3 37661 ftc1anclem4 37662 ftc1anclem5 37663 ftc1anclem6 37664 ftc1anclem7 37665 ftc1anclem8 37666 areacirclem2 37675 sge0iunmptlemfi 46385 digvalnn0 48478 nn0digval 48479 dignn0fr 48480 dig2nn1st 48484 digexp 48486 2sphere 48628 itsclc0 48650 itsclc0b 48651 |
| Copyright terms: Public domain | W3C validator |