Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10978 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13176 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7271 ℝcr 10871 0cc0 10872 +∞cpnf 11007 ≤ cle 11011 [,)cico 13080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-addrcl 10933 ax-rnegex 10943 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-ico 13084 |
This theorem is referenced by: nn0rp0 13186 rge0ssre 13187 0e0icopnf 13189 ge0addcl 13191 ge0mulcl 13192 fsumge0 15505 fprodge0 15701 isabvd 20078 abvge0 20083 nmolb 23879 nmoge0 23883 nmoi 23890 icopnfcnv 24103 cphsqrtcl 24346 tcphcph 24399 cphsscph 24413 ovolfsf 24633 ovolmge0 24639 ovolunlem1a 24658 ovoliunlem1 24664 ovolicc2lem4 24682 ioombl1lem4 24723 uniioombllem2 24745 uniioombllem6 24750 0plef 24834 i1fpos 24869 mbfi1fseqlem1 24878 mbfi1fseqlem3 24880 mbfi1fseqlem4 24881 mbfi1fseqlem5 24882 mbfi1fseqlem6 24883 mbfi1flimlem 24885 itg2const 24903 itg2const2 24904 itg2mulclem 24909 itg2mulc 24910 itg2monolem1 24913 itg2mono 24916 itg2addlem 24921 itg2gt0 24923 itg2cnlem1 24924 itg2cnlem2 24925 itg2cn 24926 iblconst 24980 itgconst 24981 ibladdlem 24982 itgaddlem1 24985 iblabslem 24990 iblabs 24991 iblmulc2 24993 itgmulc2lem1 24994 bddmulibl 25001 bddiblnc 25004 itggt0 25006 itgcn 25007 dvge0 25168 dvle 25169 dvfsumrlim 25193 cxpcn3lem 25898 cxpcn3 25899 resqrtcn 25900 loglesqrt 25909 areaf 26109 areacl 26110 areage0 26111 rlimcnp3 26115 jensenlem2 26135 jensen 26136 amgmlem 26137 amgm 26138 dchrisumlem3 26637 dchrmusumlema 26639 dchrmusum2 26640 dchrvmasumlem2 26644 dchrvmasumiflem1 26647 dchrisum0lema 26660 dchrisum0lem1b 26661 dchrisum0lem1 26662 dchrisum0lem2 26664 axcontlem2 27331 axcontlem7 27336 axcontlem8 27337 axcontlem10 27339 rge0scvg 31895 esumpcvgval 32042 hasheuni 32049 esumcvg 32050 sibfof 32303 mbfposadd 35820 itg2addnclem2 35825 itg2addnclem3 35826 itg2addnc 35827 itg2gt0cn 35828 ibladdnclem 35829 itgaddnclem1 35831 iblabsnclem 35836 iblabsnc 35837 iblmulc2nc 35838 itgmulc2nclem1 35839 itggt0cn 35843 ftc1anclem3 35848 ftc1anclem4 35849 ftc1anclem5 35850 ftc1anclem6 35851 ftc1anclem7 35852 ftc1anclem8 35853 areacirclem2 35862 sge0iunmptlemfi 43922 digvalnn0 45914 nn0digval 45915 dignn0fr 45916 dig2nn1st 45920 digexp 45922 2sphere 46064 itsclc0 46086 itsclc0b 46087 |
Copyright terms: Public domain | W3C validator |