![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11260 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13481 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 0cc0 11152 +∞cpnf 11289 ≤ cle 11293 [,)cico 13385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-ico 13389 |
This theorem is referenced by: nn0rp0 13491 rge0ssre 13492 0e0icopnf 13494 ge0addcl 13496 ge0mulcl 13497 fsumge0 15827 fprodge0 16025 isabvd 20829 abvge0 20834 nmolb 24753 nmoge0 24757 nmoi 24764 icopnfcnv 24986 cphsqrtcl 25231 tcphcph 25284 cphsscph 25298 ovolfsf 25519 ovolmge0 25525 ovolunlem1a 25544 ovoliunlem1 25550 ovolicc2lem4 25568 ioombl1lem4 25609 uniioombllem2 25631 uniioombllem6 25636 0plef 25720 i1fpos 25755 mbfi1fseqlem1 25764 mbfi1fseqlem3 25766 mbfi1fseqlem4 25767 mbfi1fseqlem5 25768 mbfi1fseqlem6 25769 mbfi1flimlem 25771 itg2const 25789 itg2const2 25790 itg2mulclem 25795 itg2mulc 25796 itg2monolem1 25799 itg2mono 25802 itg2addlem 25807 itg2gt0 25809 itg2cnlem1 25810 itg2cnlem2 25811 itg2cn 25812 iblconst 25867 itgconst 25868 ibladdlem 25869 itgaddlem1 25872 iblabslem 25877 iblabs 25878 iblmulc2 25880 itgmulc2lem1 25881 bddmulibl 25888 bddiblnc 25891 itggt0 25893 itgcn 25894 dvge0 26059 dvle 26060 dvfsumrlim 26086 cxpcn3lem 26804 cxpcn3 26805 resqrtcn 26806 loglesqrt 26818 areaf 27018 areacl 27019 areage0 27020 rlimcnp3 27024 jensenlem2 27045 jensen 27046 amgmlem 27047 amgm 27048 dchrisumlem3 27549 dchrmusumlema 27551 dchrmusum2 27552 dchrvmasumlem2 27556 dchrvmasumiflem1 27559 dchrisum0lema 27572 dchrisum0lem1b 27573 dchrisum0lem1 27574 dchrisum0lem2 27576 axcontlem2 28994 axcontlem7 28999 axcontlem8 29000 axcontlem10 29002 rge0scvg 33909 esumpcvgval 34058 hasheuni 34065 esumcvg 34066 sibfof 34321 mbfposadd 37653 itg2addnclem2 37658 itg2addnclem3 37659 itg2addnc 37660 itg2gt0cn 37661 ibladdnclem 37662 itgaddnclem1 37664 iblabsnclem 37669 iblabsnc 37670 iblmulc2nc 37671 itgmulc2nclem1 37672 itggt0cn 37676 ftc1anclem3 37681 ftc1anclem4 37682 ftc1anclem5 37683 ftc1anclem6 37684 ftc1anclem7 37685 ftc1anclem8 37686 areacirclem2 37695 sge0iunmptlemfi 46368 digvalnn0 48448 nn0digval 48449 dignn0fr 48450 dig2nn1st 48454 digexp 48456 2sphere 48598 itsclc0 48620 itsclc0b 48621 |
Copyright terms: Public domain | W3C validator |