Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10986 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13186 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 0cc0 10880 +∞cpnf 11015 ≤ cle 11019 [,)cico 13090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-addrcl 10941 ax-rnegex 10951 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-ico 13094 |
This theorem is referenced by: nn0rp0 13196 rge0ssre 13197 0e0icopnf 13199 ge0addcl 13201 ge0mulcl 13202 fsumge0 15516 fprodge0 15712 isabvd 20089 abvge0 20094 nmolb 23890 nmoge0 23894 nmoi 23901 icopnfcnv 24114 cphsqrtcl 24357 tcphcph 24410 cphsscph 24424 ovolfsf 24644 ovolmge0 24650 ovolunlem1a 24669 ovoliunlem1 24675 ovolicc2lem4 24693 ioombl1lem4 24734 uniioombllem2 24756 uniioombllem6 24761 0plef 24845 i1fpos 24880 mbfi1fseqlem1 24889 mbfi1fseqlem3 24891 mbfi1fseqlem4 24892 mbfi1fseqlem5 24893 mbfi1fseqlem6 24894 mbfi1flimlem 24896 itg2const 24914 itg2const2 24915 itg2mulclem 24920 itg2mulc 24921 itg2monolem1 24924 itg2mono 24927 itg2addlem 24932 itg2gt0 24934 itg2cnlem1 24935 itg2cnlem2 24936 itg2cn 24937 iblconst 24991 itgconst 24992 ibladdlem 24993 itgaddlem1 24996 iblabslem 25001 iblabs 25002 iblmulc2 25004 itgmulc2lem1 25005 bddmulibl 25012 bddiblnc 25015 itggt0 25017 itgcn 25018 dvge0 25179 dvle 25180 dvfsumrlim 25204 cxpcn3lem 25909 cxpcn3 25910 resqrtcn 25911 loglesqrt 25920 areaf 26120 areacl 26121 areage0 26122 rlimcnp3 26126 jensenlem2 26146 jensen 26147 amgmlem 26148 amgm 26149 dchrisumlem3 26648 dchrmusumlema 26650 dchrmusum2 26651 dchrvmasumlem2 26655 dchrvmasumiflem1 26658 dchrisum0lema 26671 dchrisum0lem1b 26672 dchrisum0lem1 26673 dchrisum0lem2 26675 axcontlem2 27342 axcontlem7 27347 axcontlem8 27348 axcontlem10 27350 rge0scvg 31908 esumpcvgval 32055 hasheuni 32062 esumcvg 32063 sibfof 32316 mbfposadd 35833 itg2addnclem2 35838 itg2addnclem3 35839 itg2addnc 35840 itg2gt0cn 35841 ibladdnclem 35842 itgaddnclem1 35844 iblabsnclem 35849 iblabsnc 35850 iblmulc2nc 35851 itgmulc2nclem1 35852 itggt0cn 35856 ftc1anclem3 35861 ftc1anclem4 35862 ftc1anclem5 35863 ftc1anclem6 35864 ftc1anclem7 35865 ftc1anclem8 35866 areacirclem2 35875 sge0iunmptlemfi 43958 digvalnn0 45956 nn0digval 45957 dignn0fr 45958 dig2nn1st 45962 digexp 45964 2sphere 46106 itsclc0 46128 itsclc0b 46129 |
Copyright terms: Public domain | W3C validator |