| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13406 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ≤ cle 11209 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 |
| This theorem is referenced by: nn0rp0 13416 rge0ssre 13417 0e0icopnf 13419 ge0addcl 13421 ge0mulcl 13422 fsumge0 15761 fprodge0 15959 isabvd 20721 abvge0 20726 nmolb 24605 nmoge0 24609 nmoi 24616 icopnfcnv 24840 cphsqrtcl 25084 tcphcph 25137 cphsscph 25151 ovolfsf 25372 ovolmge0 25378 ovolunlem1a 25397 ovoliunlem1 25403 ovolicc2lem4 25421 ioombl1lem4 25462 uniioombllem2 25484 uniioombllem6 25489 0plef 25573 i1fpos 25607 mbfi1fseqlem1 25616 mbfi1fseqlem3 25618 mbfi1fseqlem4 25619 mbfi1fseqlem5 25620 mbfi1fseqlem6 25621 mbfi1flimlem 25623 itg2const 25641 itg2const2 25642 itg2mulclem 25647 itg2mulc 25648 itg2monolem1 25651 itg2mono 25654 itg2addlem 25659 itg2gt0 25661 itg2cnlem1 25662 itg2cnlem2 25663 itg2cn 25664 iblconst 25719 itgconst 25720 ibladdlem 25721 itgaddlem1 25724 iblabslem 25729 iblabs 25730 iblmulc2 25732 itgmulc2lem1 25733 bddmulibl 25740 bddiblnc 25743 itggt0 25745 itgcn 25746 dvge0 25911 dvle 25912 dvfsumrlim 25938 cxpcn3lem 26657 cxpcn3 26658 resqrtcn 26659 loglesqrt 26671 areaf 26871 areacl 26872 areage0 26873 rlimcnp3 26877 jensenlem2 26898 jensen 26899 amgmlem 26900 amgm 26901 dchrisumlem3 27402 dchrmusumlema 27404 dchrmusum2 27405 dchrvmasumlem2 27409 dchrvmasumiflem1 27412 dchrisum0lema 27425 dchrisum0lem1b 27426 dchrisum0lem1 27427 dchrisum0lem2 27429 axcontlem2 28892 axcontlem7 28897 axcontlem8 28898 axcontlem10 28900 rge0scvg 33939 esumpcvgval 34068 hasheuni 34075 esumcvg 34076 sibfof 34331 mbfposadd 37661 itg2addnclem2 37666 itg2addnclem3 37667 itg2addnc 37668 itg2gt0cn 37669 ibladdnclem 37670 itgaddnclem1 37672 iblabsnclem 37677 iblabsnc 37678 iblmulc2nc 37679 itgmulc2nclem1 37680 itggt0cn 37684 ftc1anclem3 37689 ftc1anclem4 37690 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anclem8 37694 areacirclem2 37703 sge0iunmptlemfi 46411 digvalnn0 48588 nn0digval 48589 dignn0fr 48590 dig2nn1st 48594 digexp 48596 2sphere 48738 itsclc0 48760 itsclc0b 48761 |
| Copyright terms: Public domain | W3C validator |