![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11262 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13471 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2098 class class class wbr 5152 (class class class)co 7423 ℝcr 11153 0cc0 11154 +∞cpnf 11291 ≤ cle 11295 [,)cico 13375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-addrcl 11215 ax-rnegex 11225 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-ico 13379 |
This theorem is referenced by: nn0rp0 13481 rge0ssre 13482 0e0icopnf 13484 ge0addcl 13486 ge0mulcl 13487 fsumge0 15794 fprodge0 15990 isabvd 20740 abvge0 20745 nmolb 24717 nmoge0 24721 nmoi 24728 icopnfcnv 24950 cphsqrtcl 25195 tcphcph 25248 cphsscph 25262 ovolfsf 25483 ovolmge0 25489 ovolunlem1a 25508 ovoliunlem1 25514 ovolicc2lem4 25532 ioombl1lem4 25573 uniioombllem2 25595 uniioombllem6 25600 0plef 25684 i1fpos 25719 mbfi1fseqlem1 25728 mbfi1fseqlem3 25730 mbfi1fseqlem4 25731 mbfi1fseqlem5 25732 mbfi1fseqlem6 25733 mbfi1flimlem 25735 itg2const 25753 itg2const2 25754 itg2mulclem 25759 itg2mulc 25760 itg2monolem1 25763 itg2mono 25766 itg2addlem 25771 itg2gt0 25773 itg2cnlem1 25774 itg2cnlem2 25775 itg2cn 25776 iblconst 25830 itgconst 25831 ibladdlem 25832 itgaddlem1 25835 iblabslem 25840 iblabs 25841 iblmulc2 25843 itgmulc2lem1 25844 bddmulibl 25851 bddiblnc 25854 itggt0 25856 itgcn 25857 dvge0 26022 dvle 26023 dvfsumrlim 26049 cxpcn3lem 26767 cxpcn3 26768 resqrtcn 26769 loglesqrt 26781 areaf 26981 areacl 26982 areage0 26983 rlimcnp3 26987 jensenlem2 27008 jensen 27009 amgmlem 27010 amgm 27011 dchrisumlem3 27512 dchrmusumlema 27514 dchrmusum2 27515 dchrvmasumlem2 27519 dchrvmasumiflem1 27522 dchrisum0lema 27535 dchrisum0lem1b 27536 dchrisum0lem1 27537 dchrisum0lem2 27539 axcontlem2 28891 axcontlem7 28896 axcontlem8 28897 axcontlem10 28899 rge0scvg 33732 esumpcvgval 33879 hasheuni 33886 esumcvg 33887 sibfof 34142 mbfposadd 37328 itg2addnclem2 37333 itg2addnclem3 37334 itg2addnc 37335 itg2gt0cn 37336 ibladdnclem 37337 itgaddnclem1 37339 iblabsnclem 37344 iblabsnc 37345 iblmulc2nc 37346 itgmulc2nclem1 37347 itggt0cn 37351 ftc1anclem3 37356 ftc1anclem4 37357 ftc1anclem5 37358 ftc1anclem6 37359 ftc1anclem7 37360 ftc1anclem8 37361 areacirclem2 37370 sge0iunmptlemfi 45983 digvalnn0 47936 nn0digval 47937 dignn0fr 47938 dig2nn1st 47942 digexp 47944 2sphere 48086 itsclc0 48108 itsclc0b 48109 |
Copyright terms: Public domain | W3C validator |