![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13505 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ≤ cle 11325 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: nn0rp0 13515 rge0ssre 13516 0e0icopnf 13518 ge0addcl 13520 ge0mulcl 13521 fsumge0 15843 fprodge0 16041 isabvd 20835 abvge0 20840 nmolb 24759 nmoge0 24763 nmoi 24770 icopnfcnv 24992 cphsqrtcl 25237 tcphcph 25290 cphsscph 25304 ovolfsf 25525 ovolmge0 25531 ovolunlem1a 25550 ovoliunlem1 25556 ovolicc2lem4 25574 ioombl1lem4 25615 uniioombllem2 25637 uniioombllem6 25642 0plef 25726 i1fpos 25761 mbfi1fseqlem1 25770 mbfi1fseqlem3 25772 mbfi1fseqlem4 25773 mbfi1fseqlem5 25774 mbfi1fseqlem6 25775 mbfi1flimlem 25777 itg2const 25795 itg2const2 25796 itg2mulclem 25801 itg2mulc 25802 itg2monolem1 25805 itg2mono 25808 itg2addlem 25813 itg2gt0 25815 itg2cnlem1 25816 itg2cnlem2 25817 itg2cn 25818 iblconst 25873 itgconst 25874 ibladdlem 25875 itgaddlem1 25878 iblabslem 25883 iblabs 25884 iblmulc2 25886 itgmulc2lem1 25887 bddmulibl 25894 bddiblnc 25897 itggt0 25899 itgcn 25900 dvge0 26065 dvle 26066 dvfsumrlim 26092 cxpcn3lem 26808 cxpcn3 26809 resqrtcn 26810 loglesqrt 26822 areaf 27022 areacl 27023 areage0 27024 rlimcnp3 27028 jensenlem2 27049 jensen 27050 amgmlem 27051 amgm 27052 dchrisumlem3 27553 dchrmusumlema 27555 dchrmusum2 27556 dchrvmasumlem2 27560 dchrvmasumiflem1 27563 dchrisum0lema 27576 dchrisum0lem1b 27577 dchrisum0lem1 27578 dchrisum0lem2 27580 axcontlem2 28998 axcontlem7 29003 axcontlem8 29004 axcontlem10 29006 rge0scvg 33895 esumpcvgval 34042 hasheuni 34049 esumcvg 34050 sibfof 34305 mbfposadd 37627 itg2addnclem2 37632 itg2addnclem3 37633 itg2addnc 37634 itg2gt0cn 37635 ibladdnclem 37636 itgaddnclem1 37638 iblabsnclem 37643 iblabsnc 37644 iblmulc2nc 37645 itgmulc2nclem1 37646 itggt0cn 37650 ftc1anclem3 37655 ftc1anclem4 37656 ftc1anclem5 37657 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anclem8 37660 areacirclem2 37669 sge0iunmptlemfi 46334 digvalnn0 48333 nn0digval 48334 dignn0fr 48335 dig2nn1st 48339 digexp 48341 2sphere 48483 itsclc0 48505 itsclc0b 48506 |
Copyright terms: Public domain | W3C validator |