| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13382 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 [,)cico 13284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 |
| This theorem is referenced by: nn0rp0 13392 rge0ssre 13393 0e0icopnf 13395 ge0addcl 13397 ge0mulcl 13398 fsumge0 15737 fprodge0 15935 isabvd 20697 abvge0 20702 nmolb 24581 nmoge0 24585 nmoi 24592 icopnfcnv 24816 cphsqrtcl 25060 tcphcph 25113 cphsscph 25127 ovolfsf 25348 ovolmge0 25354 ovolunlem1a 25373 ovoliunlem1 25379 ovolicc2lem4 25397 ioombl1lem4 25438 uniioombllem2 25460 uniioombllem6 25465 0plef 25549 i1fpos 25583 mbfi1fseqlem1 25592 mbfi1fseqlem3 25594 mbfi1fseqlem4 25595 mbfi1fseqlem5 25596 mbfi1fseqlem6 25597 mbfi1flimlem 25599 itg2const 25617 itg2const2 25618 itg2mulclem 25623 itg2mulc 25624 itg2monolem1 25627 itg2mono 25630 itg2addlem 25635 itg2gt0 25637 itg2cnlem1 25638 itg2cnlem2 25639 itg2cn 25640 iblconst 25695 itgconst 25696 ibladdlem 25697 itgaddlem1 25700 iblabslem 25705 iblabs 25706 iblmulc2 25708 itgmulc2lem1 25709 bddmulibl 25716 bddiblnc 25719 itggt0 25721 itgcn 25722 dvge0 25887 dvle 25888 dvfsumrlim 25914 cxpcn3lem 26633 cxpcn3 26634 resqrtcn 26635 loglesqrt 26647 areaf 26847 areacl 26848 areage0 26849 rlimcnp3 26853 jensenlem2 26874 jensen 26875 amgmlem 26876 amgm 26877 dchrisumlem3 27378 dchrmusumlema 27380 dchrmusum2 27381 dchrvmasumlem2 27385 dchrvmasumiflem1 27388 dchrisum0lema 27401 dchrisum0lem1b 27402 dchrisum0lem1 27403 dchrisum0lem2 27405 axcontlem2 28868 axcontlem7 28873 axcontlem8 28874 axcontlem10 28876 rge0scvg 33912 esumpcvgval 34041 hasheuni 34048 esumcvg 34049 sibfof 34304 mbfposadd 37634 itg2addnclem2 37639 itg2addnclem3 37640 itg2addnc 37641 itg2gt0cn 37642 ibladdnclem 37643 itgaddnclem1 37645 iblabsnclem 37650 iblabsnc 37651 iblmulc2nc 37652 itgmulc2nclem1 37653 itggt0cn 37657 ftc1anclem3 37662 ftc1anclem4 37663 ftc1anclem5 37664 ftc1anclem6 37665 ftc1anclem7 37666 ftc1anclem8 37667 areacirclem2 37676 sge0iunmptlemfi 46384 digvalnn0 48561 nn0digval 48562 dignn0fr 48563 dig2nn1st 48567 digexp 48569 2sphere 48711 itsclc0 48733 itsclc0b 48734 |
| Copyright terms: Public domain | W3C validator |