| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11117 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13348 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 +∞cpnf 11146 ≤ cle 11150 [,)cico 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ico 13254 |
| This theorem is referenced by: nn0rp0 13358 rge0ssre 13359 0e0icopnf 13361 ge0addcl 13363 ge0mulcl 13364 fsumge0 15702 fprodge0 15900 isabvd 20697 abvge0 20702 nmolb 24603 nmoge0 24607 nmoi 24614 icopnfcnv 24838 cphsqrtcl 25082 tcphcph 25135 cphsscph 25149 ovolfsf 25370 ovolmge0 25376 ovolunlem1a 25395 ovoliunlem1 25401 ovolicc2lem4 25419 ioombl1lem4 25460 uniioombllem2 25482 uniioombllem6 25487 0plef 25571 i1fpos 25605 mbfi1fseqlem1 25614 mbfi1fseqlem3 25616 mbfi1fseqlem4 25617 mbfi1fseqlem5 25618 mbfi1fseqlem6 25619 mbfi1flimlem 25621 itg2const 25639 itg2const2 25640 itg2mulclem 25645 itg2mulc 25646 itg2monolem1 25649 itg2mono 25652 itg2addlem 25657 itg2gt0 25659 itg2cnlem1 25660 itg2cnlem2 25661 itg2cn 25662 iblconst 25717 itgconst 25718 ibladdlem 25719 itgaddlem1 25722 iblabslem 25727 iblabs 25728 iblmulc2 25730 itgmulc2lem1 25731 bddmulibl 25738 bddiblnc 25741 itggt0 25743 itgcn 25744 dvge0 25909 dvle 25910 dvfsumrlim 25936 cxpcn3lem 26655 cxpcn3 26656 resqrtcn 26657 loglesqrt 26669 areaf 26869 areacl 26870 areage0 26871 rlimcnp3 26875 jensenlem2 26896 jensen 26897 amgmlem 26898 amgm 26899 dchrisumlem3 27400 dchrmusumlema 27402 dchrmusum2 27403 dchrvmasumlem2 27407 dchrvmasumiflem1 27410 dchrisum0lema 27423 dchrisum0lem1b 27424 dchrisum0lem1 27425 dchrisum0lem2 27427 axcontlem2 28910 axcontlem7 28915 axcontlem8 28916 axcontlem10 28918 rge0scvg 33916 esumpcvgval 34045 hasheuni 34052 esumcvg 34053 sibfof 34308 mbfposadd 37651 itg2addnclem2 37656 itg2addnclem3 37657 itg2addnc 37658 itg2gt0cn 37659 ibladdnclem 37660 itgaddnclem1 37662 iblabsnclem 37667 iblabsnc 37668 iblmulc2nc 37669 itgmulc2nclem1 37670 itggt0cn 37674 ftc1anclem3 37679 ftc1anclem4 37680 ftc1anclem5 37681 ftc1anclem6 37682 ftc1anclem7 37683 ftc1anclem8 37684 areacirclem2 37693 sge0iunmptlemfi 46398 digvalnn0 48588 nn0digval 48589 dignn0fr 48590 dig2nn1st 48594 digexp 48596 2sphere 48738 itsclc0 48760 itsclc0b 48761 |
| Copyright terms: Public domain | W3C validator |