Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version |
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | elicopnf 13106 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 |
This theorem is referenced by: nn0rp0 13116 rge0ssre 13117 0e0icopnf 13119 ge0addcl 13121 ge0mulcl 13122 fsumge0 15435 fprodge0 15631 isabvd 19995 abvge0 20000 nmolb 23787 nmoge0 23791 nmoi 23798 icopnfcnv 24011 cphsqrtcl 24253 tcphcph 24306 cphsscph 24320 ovolfsf 24540 ovolmge0 24546 ovolunlem1a 24565 ovoliunlem1 24571 ovolicc2lem4 24589 ioombl1lem4 24630 uniioombllem2 24652 uniioombllem6 24657 0plef 24741 i1fpos 24776 mbfi1fseqlem1 24785 mbfi1fseqlem3 24787 mbfi1fseqlem4 24788 mbfi1fseqlem5 24789 mbfi1fseqlem6 24790 mbfi1flimlem 24792 itg2const 24810 itg2const2 24811 itg2mulclem 24816 itg2mulc 24817 itg2monolem1 24820 itg2mono 24823 itg2addlem 24828 itg2gt0 24830 itg2cnlem1 24831 itg2cnlem2 24832 itg2cn 24833 iblconst 24887 itgconst 24888 ibladdlem 24889 itgaddlem1 24892 iblabslem 24897 iblabs 24898 iblmulc2 24900 itgmulc2lem1 24901 bddmulibl 24908 bddiblnc 24911 itggt0 24913 itgcn 24914 dvge0 25075 dvle 25076 dvfsumrlim 25100 cxpcn3lem 25805 cxpcn3 25806 resqrtcn 25807 loglesqrt 25816 areaf 26016 areacl 26017 areage0 26018 rlimcnp3 26022 jensenlem2 26042 jensen 26043 amgmlem 26044 amgm 26045 dchrisumlem3 26544 dchrmusumlema 26546 dchrmusum2 26547 dchrvmasumlem2 26551 dchrvmasumiflem1 26554 dchrisum0lema 26567 dchrisum0lem1b 26568 dchrisum0lem1 26569 dchrisum0lem2 26571 axcontlem2 27236 axcontlem7 27241 axcontlem8 27242 axcontlem10 27244 rge0scvg 31801 esumpcvgval 31946 hasheuni 31953 esumcvg 31954 sibfof 32207 mbfposadd 35751 itg2addnclem2 35756 itg2addnclem3 35757 itg2addnc 35758 itg2gt0cn 35759 ibladdnclem 35760 itgaddnclem1 35762 iblabsnclem 35767 iblabsnc 35768 iblmulc2nc 35769 itgmulc2nclem1 35770 itggt0cn 35774 ftc1anclem3 35779 ftc1anclem4 35780 ftc1anclem5 35781 ftc1anclem6 35782 ftc1anclem7 35783 ftc1anclem8 35784 areacirclem2 35793 sge0iunmptlemfi 43841 digvalnn0 45833 nn0digval 45834 dignn0fr 45835 dig2nn1st 45839 digexp 45841 2sphere 45983 itsclc0 46005 itsclc0b 46006 |
Copyright terms: Public domain | W3C validator |