| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11235 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13460 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 0cc0 11127 +∞cpnf 11264 ≤ cle 11268 [,)cico 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-addrcl 11188 ax-rnegex 11198 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ico 13366 |
| This theorem is referenced by: nn0rp0 13470 rge0ssre 13471 0e0icopnf 13473 ge0addcl 13475 ge0mulcl 13476 fsumge0 15809 fprodge0 16007 isabvd 20770 abvge0 20775 nmolb 24654 nmoge0 24658 nmoi 24665 icopnfcnv 24889 cphsqrtcl 25134 tcphcph 25187 cphsscph 25201 ovolfsf 25422 ovolmge0 25428 ovolunlem1a 25447 ovoliunlem1 25453 ovolicc2lem4 25471 ioombl1lem4 25512 uniioombllem2 25534 uniioombllem6 25539 0plef 25623 i1fpos 25657 mbfi1fseqlem1 25666 mbfi1fseqlem3 25668 mbfi1fseqlem4 25669 mbfi1fseqlem5 25670 mbfi1fseqlem6 25671 mbfi1flimlem 25673 itg2const 25691 itg2const2 25692 itg2mulclem 25697 itg2mulc 25698 itg2monolem1 25701 itg2mono 25704 itg2addlem 25709 itg2gt0 25711 itg2cnlem1 25712 itg2cnlem2 25713 itg2cn 25714 iblconst 25769 itgconst 25770 ibladdlem 25771 itgaddlem1 25774 iblabslem 25779 iblabs 25780 iblmulc2 25782 itgmulc2lem1 25783 bddmulibl 25790 bddiblnc 25793 itggt0 25795 itgcn 25796 dvge0 25961 dvle 25962 dvfsumrlim 25988 cxpcn3lem 26707 cxpcn3 26708 resqrtcn 26709 loglesqrt 26721 areaf 26921 areacl 26922 areage0 26923 rlimcnp3 26927 jensenlem2 26948 jensen 26949 amgmlem 26950 amgm 26951 dchrisumlem3 27452 dchrmusumlema 27454 dchrmusum2 27455 dchrvmasumlem2 27459 dchrvmasumiflem1 27462 dchrisum0lema 27475 dchrisum0lem1b 27476 dchrisum0lem1 27477 dchrisum0lem2 27479 axcontlem2 28890 axcontlem7 28895 axcontlem8 28896 axcontlem10 28898 rge0scvg 33926 esumpcvgval 34055 hasheuni 34062 esumcvg 34063 sibfof 34318 mbfposadd 37637 itg2addnclem2 37642 itg2addnclem3 37643 itg2addnc 37644 itg2gt0cn 37645 ibladdnclem 37646 itgaddnclem1 37648 iblabsnclem 37653 iblabsnc 37654 iblmulc2nc 37655 itgmulc2nclem1 37656 itggt0cn 37660 ftc1anclem3 37665 ftc1anclem4 37666 ftc1anclem5 37667 ftc1anclem6 37668 ftc1anclem7 37669 ftc1anclem8 37670 areacirclem2 37679 sge0iunmptlemfi 46390 digvalnn0 48527 nn0digval 48528 dignn0fr 48529 dig2nn1st 48533 digexp 48535 2sphere 48677 itsclc0 48699 itsclc0b 48700 |
| Copyright terms: Public domain | W3C validator |