Colors of
variables: wff
setvar class |
Syntax hints:
↔ wb 205 ∧ wa 394
∈ wcel 2104 class class class wbr 5147
(class class class)co 7411 ℝcr 11111
0cc0 11112 +∞cpnf 11249
≤ cle 11253 [,)cico 13330 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13334 |
This theorem is referenced by: nn0rp0
13436 rge0ssre
13437 0e0icopnf
13439 ge0addcl
13441 ge0mulcl
13442 fsumge0
15745 fprodge0
15941 isabvd
20571 abvge0
20576 nmolb
24454 nmoge0
24458 nmoi
24465 icopnfcnv
24687 cphsqrtcl
24932 tcphcph
24985 cphsscph
24999 ovolfsf
25220 ovolmge0
25226 ovolunlem1a
25245 ovoliunlem1
25251 ovolicc2lem4
25269 ioombl1lem4
25310 uniioombllem2
25332 uniioombllem6
25337 0plef
25421 i1fpos
25456 mbfi1fseqlem1
25465 mbfi1fseqlem3
25467 mbfi1fseqlem4
25468 mbfi1fseqlem5
25469 mbfi1fseqlem6
25470 mbfi1flimlem
25472 itg2const
25490 itg2const2
25491 itg2mulclem
25496 itg2mulc
25497 itg2monolem1
25500 itg2mono
25503 itg2addlem
25508 itg2gt0
25510 itg2cnlem1
25511 itg2cnlem2
25512 itg2cn
25513 iblconst
25567 itgconst
25568 ibladdlem
25569 itgaddlem1
25572 iblabslem
25577 iblabs
25578 iblmulc2
25580 itgmulc2lem1
25581 bddmulibl
25588 bddiblnc
25591 itggt0
25593 itgcn
25594 dvge0
25758 dvle
25759 dvfsumrlim
25783 cxpcn3lem
26491 cxpcn3
26492 resqrtcn
26493 loglesqrt
26502 areaf
26702 areacl
26703 areage0
26704 rlimcnp3
26708 jensenlem2
26728 jensen
26729 amgmlem
26730 amgm
26731 dchrisumlem3
27230 dchrmusumlema
27232 dchrmusum2
27233 dchrvmasumlem2
27237 dchrvmasumiflem1
27240 dchrisum0lema
27253 dchrisum0lem1b
27254 dchrisum0lem1
27255 dchrisum0lem2
27257 axcontlem2
28490 axcontlem7
28495 axcontlem8
28496 axcontlem10
28498 rge0scvg
33227 esumpcvgval
33374 hasheuni
33381 esumcvg
33382 sibfof
33637 mbfposadd
36838 itg2addnclem2
36843 itg2addnclem3
36844 itg2addnc
36845 itg2gt0cn
36846 ibladdnclem
36847 itgaddnclem1
36849 iblabsnclem
36854 iblabsnc
36855 iblmulc2nc
36856 itgmulc2nclem1
36857 itggt0cn
36861 ftc1anclem3
36866 ftc1anclem4
36867 ftc1anclem5
36868 ftc1anclem6
36869 ftc1anclem7
36870 ftc1anclem8
36871 areacirclem2
36880 sge0iunmptlemfi
45427 digvalnn0
47372 nn0digval
47373 dignn0fr
47374 dig2nn1st
47378 digexp
47380 2sphere
47522 itsclc0
47544 itsclc0b
47545 |