| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrege0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| elrege0 | ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | elicopnf 13413 | . 2 ⊢ (0 ∈ ℝ → (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 +∞cpnf 11212 ≤ cle 11216 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ico 13319 |
| This theorem is referenced by: nn0rp0 13423 rge0ssre 13424 0e0icopnf 13426 ge0addcl 13428 ge0mulcl 13429 fsumge0 15768 fprodge0 15966 isabvd 20728 abvge0 20733 nmolb 24612 nmoge0 24616 nmoi 24623 icopnfcnv 24847 cphsqrtcl 25091 tcphcph 25144 cphsscph 25158 ovolfsf 25379 ovolmge0 25385 ovolunlem1a 25404 ovoliunlem1 25410 ovolicc2lem4 25428 ioombl1lem4 25469 uniioombllem2 25491 uniioombllem6 25496 0plef 25580 i1fpos 25614 mbfi1fseqlem1 25623 mbfi1fseqlem3 25625 mbfi1fseqlem4 25626 mbfi1fseqlem5 25627 mbfi1fseqlem6 25628 mbfi1flimlem 25630 itg2const 25648 itg2const2 25649 itg2mulclem 25654 itg2mulc 25655 itg2monolem1 25658 itg2mono 25661 itg2addlem 25666 itg2gt0 25668 itg2cnlem1 25669 itg2cnlem2 25670 itg2cn 25671 iblconst 25726 itgconst 25727 ibladdlem 25728 itgaddlem1 25731 iblabslem 25736 iblabs 25737 iblmulc2 25739 itgmulc2lem1 25740 bddmulibl 25747 bddiblnc 25750 itggt0 25752 itgcn 25753 dvge0 25918 dvle 25919 dvfsumrlim 25945 cxpcn3lem 26664 cxpcn3 26665 resqrtcn 26666 loglesqrt 26678 areaf 26878 areacl 26879 areage0 26880 rlimcnp3 26884 jensenlem2 26905 jensen 26906 amgmlem 26907 amgm 26908 dchrisumlem3 27409 dchrmusumlema 27411 dchrmusum2 27412 dchrvmasumlem2 27416 dchrvmasumiflem1 27419 dchrisum0lema 27432 dchrisum0lem1b 27433 dchrisum0lem1 27434 dchrisum0lem2 27436 axcontlem2 28899 axcontlem7 28904 axcontlem8 28905 axcontlem10 28907 rge0scvg 33946 esumpcvgval 34075 hasheuni 34082 esumcvg 34083 sibfof 34338 mbfposadd 37668 itg2addnclem2 37673 itg2addnclem3 37674 itg2addnc 37675 itg2gt0cn 37676 ibladdnclem 37677 itgaddnclem1 37679 iblabsnclem 37684 iblabsnc 37685 iblmulc2nc 37686 itgmulc2nclem1 37687 itggt0cn 37691 ftc1anclem3 37696 ftc1anclem4 37697 ftc1anclem5 37698 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anclem8 37701 areacirclem2 37710 sge0iunmptlemfi 46418 digvalnn0 48592 nn0digval 48593 dignn0fr 48594 dig2nn1st 48598 digexp 48600 2sphere 48742 itsclc0 48764 itsclc0b 48765 |
| Copyright terms: Public domain | W3C validator |