Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoln0N Structured version   Visualization version   GIF version

Theorem lvoln0N 39303
Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lvoln0.z 0 = (0.‘𝐾)
lvoln0.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoln0N ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋0 )

Proof of Theorem lvoln0N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
21atex 39118 . . . 4 (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅)
3 n0 4346 . . . 4 ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
42, 3sylib 217 . . 3 (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
54adantr 479 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾))
6 eqid 2726 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 lvoln0.v . . . . 5 𝑉 = (LVols‘𝐾)
86, 1, 7lvolnleat 39295 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
983expa 1115 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝)
10 hlop 39073 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
1110ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
12 eqid 2726 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1312, 1atbase 39000 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1413adantl 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾))
15 lvoln0.z . . . . . . 7 0 = (0.‘𝐾)
1612, 6, 15op0le 38897 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝)
1711, 14, 16syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝)
18 breq1 5148 . . . . 5 (𝑋 = 0 → (𝑋(le‘𝐾)𝑝0 (le‘𝐾)𝑝))
1917, 18syl5ibrcom 246 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0𝑋(le‘𝐾)𝑝))
2019necon3bd 2944 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝𝑋0 ))
219, 20mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋0 )
225, 21exlimddv 1931 1 ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  wne 2930  c0 4322   class class class wbr 5145  cfv 6546  Basecbs 17208  lecple 17268  0.cp0 18443  OPcops 38883  Atomscatm 38974  HLchlt 39061  LVolsclvol 39205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-oposet 38887  df-ol 38889  df-oml 38890  df-covers 38977  df-ats 38978  df-atl 39009  df-cvlat 39033  df-hlat 39062  df-llines 39210  df-lplanes 39211  df-lvols 39212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator