| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoln0N | Structured version Visualization version GIF version | ||
| Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lvoln0.z | ⊢ 0 = (0.‘𝐾) |
| lvoln0.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvoln0N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | 1 | atex 39425 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
| 3 | n0 4328 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
| 6 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | lvoln0.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 8 | 6, 1, 7 | lvolnleat 39602 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
| 9 | 8 | 3expa 1118 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
| 10 | hlop 39380 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
| 12 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | 12, 1 | atbase 39307 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
| 15 | lvoln0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
| 16 | 12, 6, 15 | op0le 39204 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
| 17 | 11, 14, 16 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
| 18 | breq1 5122 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
| 19 | 17, 18 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
| 20 | 19 | necon3bd 2946 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
| 21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
| 22 | 5, 21 | exlimddv 1935 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 0.cp0 18433 OPcops 39190 Atomscatm 39281 HLchlt 39368 LVolsclvol 39512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |