Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoln0N | Structured version Visualization version GIF version |
Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lvoln0.z | ⊢ 0 = (0.‘𝐾) |
lvoln0.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvoln0N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | 1 | atex 37157 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
3 | n0 4261 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
4 | 2, 3 | sylib 221 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
5 | 4 | adantr 484 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
6 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | lvoln0.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
8 | 6, 1, 7 | lvolnleat 37334 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
9 | 8 | 3expa 1120 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
10 | hlop 37113 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
12 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 12, 1 | atbase 37040 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
14 | 13 | adantl 485 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
15 | lvoln0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
16 | 12, 6, 15 | op0le 36937 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
17 | 11, 14, 16 | syl2anc 587 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
18 | breq1 5056 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
19 | 17, 18 | syl5ibrcom 250 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
20 | 19 | necon3bd 2954 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
22 | 5, 21 | exlimddv 1943 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ∅c0 4237 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 lecple 16809 0.cp0 17929 OPcops 36923 Atomscatm 37014 HLchlt 37101 LVolsclvol 37244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |