| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoln0N | Structured version Visualization version GIF version | ||
| Description: A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lvoln0.z | ⊢ 0 = (0.‘𝐾) |
| lvoln0.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvoln0N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | 1 | atex 39400 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
| 3 | n0 4316 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
| 6 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | lvoln0.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 8 | 6, 1, 7 | lvolnleat 39577 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
| 9 | 8 | 3expa 1118 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
| 10 | hlop 39355 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | 12, 1 | atbase 39282 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
| 15 | lvoln0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
| 16 | 12, 6, 15 | op0le 39179 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
| 17 | 11, 14, 16 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
| 18 | breq1 5110 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
| 19 | 17, 18 | syl5ibrcom 247 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
| 20 | 19 | necon3bd 2939 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
| 21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
| 22 | 5, 21 | exlimddv 1935 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 0.cp0 18382 OPcops 39165 Atomscatm 39256 HLchlt 39343 LVolsclvol 39487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |