![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnn0N | Structured version Visualization version GIF version |
Description: A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnn0.z | ⊢ 0 = (0.‘𝐾) |
lplnn0.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnn0N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | 1 | atex 35476 | . . . 4 ⊢ (𝐾 ∈ HL → (Atoms‘𝐾) ≠ ∅) |
3 | n0 4162 | . . . 4 ⊢ ((Atoms‘𝐾) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) | |
4 | 2, 3 | sylib 210 | . . 3 ⊢ (𝐾 ∈ HL → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
5 | 4 | adantr 474 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ∃𝑝 𝑝 ∈ (Atoms‘𝐾)) |
6 | eqid 2825 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | lplnn0.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | 6, 1, 7 | lplnnleat 35612 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
9 | 8 | 3expa 1151 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ¬ 𝑋(le‘𝐾)𝑝) |
10 | hlop 35432 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
11 | 10 | ad2antrr 717 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP) |
12 | eqid 2825 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | 12, 1 | atbase 35359 | . . . . . . 7 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
14 | 13 | adantl 475 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Base‘𝐾)) |
15 | lplnn0.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
16 | 12, 6, 15 | op0le 35256 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑝) |
17 | 11, 14, 16 | syl2anc 579 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 (le‘𝐾)𝑝) |
18 | breq1 4878 | . . . . 5 ⊢ (𝑋 = 0 → (𝑋(le‘𝐾)𝑝 ↔ 0 (le‘𝐾)𝑝)) | |
19 | 17, 18 | syl5ibrcom 239 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 = 0 → 𝑋(le‘𝐾)𝑝)) |
20 | 19 | necon3bd 3013 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (¬ 𝑋(le‘𝐾)𝑝 → 𝑋 ≠ 0 )) |
21 | 9, 20 | mpd 15 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋 ≠ 0 ) |
22 | 5, 21 | exlimddv 2034 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∃wex 1878 ∈ wcel 2164 ≠ wne 2999 ∅c0 4146 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 lecple 16319 0.cp0 17397 OPcops 35242 Atomscatm 35333 HLchlt 35420 LPlanesclpl 35562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |