![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnn0N | Structured version Visualization version GIF version |
Description: A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnn0.z | β’ 0 = (0.βπΎ) |
lplnn0.p | β’ π = (LPlanesβπΎ) |
Ref | Expression |
---|---|
lplnn0N | β’ ((πΎ β HL β§ π β π) β π β 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
2 | 1 | atex 38789 | . . . 4 β’ (πΎ β HL β (AtomsβπΎ) β β ) |
3 | n0 4341 | . . . 4 β’ ((AtomsβπΎ) β β β βπ π β (AtomsβπΎ)) | |
4 | 2, 3 | sylib 217 | . . 3 β’ (πΎ β HL β βπ π β (AtomsβπΎ)) |
5 | 4 | adantr 480 | . 2 β’ ((πΎ β HL β§ π β π) β βπ π β (AtomsβπΎ)) |
6 | eqid 2726 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
7 | lplnn0.p | . . . . 5 β’ π = (LPlanesβπΎ) | |
8 | 6, 1, 7 | lplnnleat 38925 | . . . 4 β’ ((πΎ β HL β§ π β π β§ π β (AtomsβπΎ)) β Β¬ π(leβπΎ)π) |
9 | 8 | 3expa 1115 | . . 3 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β Β¬ π(leβπΎ)π) |
10 | hlop 38744 | . . . . . . 7 β’ (πΎ β HL β πΎ β OP) | |
11 | 10 | ad2antrr 723 | . . . . . 6 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β πΎ β OP) |
12 | eqid 2726 | . . . . . . . 8 β’ (BaseβπΎ) = (BaseβπΎ) | |
13 | 12, 1 | atbase 38671 | . . . . . . 7 β’ (π β (AtomsβπΎ) β π β (BaseβπΎ)) |
14 | 13 | adantl 481 | . . . . . 6 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β π β (BaseβπΎ)) |
15 | lplnn0.z | . . . . . . 7 β’ 0 = (0.βπΎ) | |
16 | 12, 6, 15 | op0le 38568 | . . . . . 6 β’ ((πΎ β OP β§ π β (BaseβπΎ)) β 0 (leβπΎ)π) |
17 | 11, 14, 16 | syl2anc 583 | . . . . 5 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β 0 (leβπΎ)π) |
18 | breq1 5144 | . . . . 5 β’ (π = 0 β (π(leβπΎ)π β 0 (leβπΎ)π)) | |
19 | 17, 18 | syl5ibrcom 246 | . . . 4 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β (π = 0 β π(leβπΎ)π)) |
20 | 19 | necon3bd 2948 | . . 3 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β (Β¬ π(leβπΎ)π β π β 0 )) |
21 | 9, 20 | mpd 15 | . 2 β’ (((πΎ β HL β§ π β π) β§ π β (AtomsβπΎ)) β π β 0 ) |
22 | 5, 21 | exlimddv 1930 | 1 β’ ((πΎ β HL β§ π β π) β π β 0 ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 β wne 2934 β c0 4317 class class class wbr 5141 βcfv 6536 Basecbs 17150 lecple 17210 0.cp0 18385 OPcops 38554 Atomscatm 38645 HLchlt 38732 LPlanesclpl 38875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18257 df-poset 18275 df-plt 18292 df-lub 18308 df-glb 18309 df-join 18310 df-meet 18311 df-p0 18387 df-p1 18388 df-lat 18394 df-clat 18461 df-oposet 38558 df-ol 38560 df-oml 38561 df-covers 38648 df-ats 38649 df-atl 38680 df-cvlat 38704 df-hlat 38733 df-llines 38881 df-lplanes 38882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |