Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlt | Structured version Visualization version GIF version |
Description: Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012.) |
Ref | Expression |
---|---|
atlt.s | ⊢ < = (lt‘𝐾) |
atlt.j | ⊢ ∨ = (join‘𝐾) |
atlt.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlt | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃 ≠ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
2 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
3 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
4 | atlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
5 | atlt.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | atlt.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2736 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
8 | 4, 5, 6, 7 | atltcvr 37649 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
9 | 1, 2, 2, 3, 8 | syl13anc 1372 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
10 | 5, 7, 6 | atcvr1 37631 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
11 | 9, 10 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃 ≠ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ltcplt 18075 joincjn 18078 ⋖ ccvr 37476 Atomscatm 37477 HLchlt 37564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-lat 18199 df-clat 18266 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 |
This theorem is referenced by: atlelt 37652 2atlt 37653 |
Copyright terms: Public domain | W3C validator |