| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnem0 | Structured version Visualization version GIF version | ||
| Description: The meet of distinct atoms is zero. (atnemeq0 32313 analog.) (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atnem0.m | ⊢ ∧ = (meet‘𝐾) |
| atnem0.z | ⊢ 0 = (0.‘𝐾) |
| atnem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnem0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | atnem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atncmp 39297 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ 𝑃 ≠ 𝑄)) |
| 4 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | 4, 2 | atbase 39274 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 6 | atnem0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 7 | atnem0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 8 | 4, 1, 6, 7, 2 | atnle 39302 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ (Base‘𝐾)) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
| 9 | 5, 8 | syl3an3 1165 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
| 10 | 3, 9 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 lecple 17233 meetcmee 18279 0.cp0 18388 Atomscatm 39248 AtLatcal 39249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-lat 18397 df-covers 39251 df-ats 39252 df-atl 39283 |
| This theorem is referenced by: cvlatcvr1 39326 atcvrj1 39417 dalem24 39683 lhp2at0 40018 trlval3 40173 cdleme0e 40203 cdleme7c 40231 |
| Copyright terms: Public domain | W3C validator |