Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnem0 Structured version   Visualization version   GIF version

Theorem atnem0 39297
Description: The meet of distinct atoms is zero. (atnemeq0 32321 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnem0.m = (meet‘𝐾)
atnem0.z 0 = (0.‘𝐾)
atnem0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnem0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ (𝑃 𝑄) = 0 ))

Proof of Theorem atnem0
StepHypRef Expression
1 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
2 atnem0.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atncmp 39291 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃(le‘𝐾)𝑄𝑃𝑄))
4 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
54, 2atbase 39268 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6 atnem0.m . . . 4 = (meet‘𝐾)
7 atnem0.z . . . 4 0 = (0.‘𝐾)
84, 1, 6, 7, 2atnle 39296 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄 ∈ (Base‘𝐾)) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 𝑄) = 0 ))
95, 8syl3an3 1165 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 𝑄) = 0 ))
103, 9bitr3d 281 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ (𝑃 𝑄) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  meetcmee 18218  0.cp0 18327  Atomscatm 39242  AtLatcal 39243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-covers 39245  df-ats 39246  df-atl 39277
This theorem is referenced by:  cvlatcvr1  39320  atcvrj1  39410  dalem24  39676  lhp2at0  40011  trlval3  40166  cdleme0e  40196  cdleme7c  40224
  Copyright terms: Public domain W3C validator