![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atnem0 | Structured version Visualization version GIF version |
Description: The meet of distinct atoms is zero. (atnemeq0 32181 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atnem0.m | ⊢ ∧ = (meet‘𝐾) |
atnem0.z | ⊢ 0 = (0.‘𝐾) |
atnem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atnem0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | atnem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atncmp 38779 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ 𝑃 ≠ 𝑄)) |
4 | eqid 2728 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 4, 2 | atbase 38756 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | atnem0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
7 | atnem0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
8 | 4, 1, 6, 7, 2 | atnle 38784 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ (Base‘𝐾)) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
9 | 5, 8 | syl3an3 1163 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
10 | 3, 9 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 class class class wbr 5143 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 lecple 17234 meetcmee 18298 0.cp0 18409 Atomscatm 38730 AtLatcal 38731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-lat 18418 df-covers 38733 df-ats 38734 df-atl 38765 |
This theorem is referenced by: cvlatcvr1 38808 atcvrj1 38899 dalem24 39165 lhp2at0 39500 trlval3 39655 cdleme0e 39685 cdleme7c 39713 |
Copyright terms: Public domain | W3C validator |