![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atnem0 | Structured version Visualization version GIF version |
Description: The meet of distinct atoms is zero. (atnemeq0 31661 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atnem0.m | β’ β§ = (meetβπΎ) |
atnem0.z | β’ 0 = (0.βπΎ) |
atnem0.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atnem0 | β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β π β (π β§ π) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
2 | atnem0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | 1, 2 | atncmp 38230 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (Β¬ π(leβπΎ)π β π β π)) |
4 | eqid 2733 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
5 | 4, 2 | atbase 38207 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | atnem0.m | . . . 4 β’ β§ = (meetβπΎ) | |
7 | atnem0.z | . . . 4 β’ 0 = (0.βπΎ) | |
8 | 4, 1, 6, 7, 2 | atnle 38235 | . . 3 β’ ((πΎ β AtLat β§ π β π΄ β§ π β (BaseβπΎ)) β (Β¬ π(leβπΎ)π β (π β§ π) = 0 )) |
9 | 5, 8 | syl3an3 1166 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (Β¬ π(leβπΎ)π β (π β§ π) = 0 )) |
10 | 3, 9 | bitr3d 281 | 1 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β π β (π β§ π) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 lecple 17204 meetcmee 18265 0.cp0 18376 Atomscatm 38181 AtLatcal 38182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-lat 18385 df-covers 38184 df-ats 38185 df-atl 38216 |
This theorem is referenced by: cvlatcvr1 38259 atcvrj1 38350 dalem24 38616 lhp2at0 38951 trlval3 39106 cdleme0e 39136 cdleme7c 39164 |
Copyright terms: Public domain | W3C validator |