Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnem0 Structured version   Visualization version   GIF version

Theorem atnem0 36977
Description: The meet of distinct atoms is zero. (atnemeq0 30314 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnem0.m = (meet‘𝐾)
atnem0.z 0 = (0.‘𝐾)
atnem0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnem0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ (𝑃 𝑄) = 0 ))

Proof of Theorem atnem0
StepHypRef Expression
1 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
2 atnem0.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atncmp 36971 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃(le‘𝐾)𝑄𝑃𝑄))
4 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
54, 2atbase 36948 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6 atnem0.m . . . 4 = (meet‘𝐾)
7 atnem0.z . . . 4 0 = (0.‘𝐾)
84, 1, 6, 7, 2atnle 36976 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄 ∈ (Base‘𝐾)) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 𝑄) = 0 ))
95, 8syl3an3 1166 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 𝑄) = 0 ))
103, 9bitr3d 284 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ (𝑃 𝑄) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1088   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  (class class class)co 7172  Basecbs 16588  lecple 16677  meetcmee 17673  0.cp0 17765  Atomscatm 36922  AtLatcal 36923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-proset 17656  df-poset 17674  df-plt 17686  df-lub 17702  df-glb 17703  df-join 17704  df-meet 17705  df-p0 17767  df-lat 17774  df-covers 36925  df-ats 36926  df-atl 36957
This theorem is referenced by:  cvlatcvr1  37000  atcvrj1  37090  dalem24  37356  lhp2at0  37691  trlval3  37846  cdleme0e  37876  cdleme7c  37904
  Copyright terms: Public domain W3C validator