Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline4N Structured version   Visualization version   GIF version

Theorem isline4N 39760
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
isline4.b 𝐵 = (Base‘𝐾)
isline4.c 𝐶 = ( ⋖ ‘𝐾)
isline4.a 𝐴 = (Atoms‘𝐾)
isline4.n 𝑁 = (Lines‘𝐾)
isline4.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
isline4N ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   𝑀,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑁(𝑝)

Proof of Theorem isline4N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 isline4.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (join‘𝐾) = (join‘𝐾)
3 isline4.a . . 3 𝐴 = (Atoms‘𝐾)
4 isline4.n . . 3 𝑁 = (Lines‘𝐾)
5 isline4.m . . 3 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 39759 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
7 simpll 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
81, 3atbase 39271 . . . . . 6 (𝑝𝐴𝑝𝐵)
98adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
10 simplr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
11 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 isline4.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
131, 11, 2, 12, 3cvrval3 39396 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋)))
147, 9, 10, 13syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋)))
15 hlatl 39342 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1615ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
17 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
18 simplr 769 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑝𝐴)
1911, 3atncmp 39294 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑝𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
2016, 17, 18, 19syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
21 necom 2992 . . . . . . 7 (𝑞𝑝𝑝𝑞)
2220, 21bitrdi 287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑝𝑞))
23 eqcom 2742 . . . . . . 7 ((𝑝(join‘𝐾)𝑞) = 𝑋𝑋 = (𝑝(join‘𝐾)𝑞))
2423a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝(join‘𝐾)𝑞) = 𝑋𝑋 = (𝑝(join‘𝐾)𝑞)))
2522, 24anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2625rexbidva 3175 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2714, 26bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2827rexbidva 3175 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 𝑝𝐶𝑋 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
296, 28bitr4d 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  ccvr 39244  Atomscatm 39245  AtLatcal 39246  HLchlt 39332  Linesclines 39477  pmapcpmap 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lines 39484  df-pmap 39487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator