| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isline4N | Structured version Visualization version GIF version | ||
| Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isline4.b | ⊢ 𝐵 = (Base‘𝐾) |
| isline4.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| isline4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline4.n | ⊢ 𝑁 = (Lines‘𝐾) |
| isline4.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| isline4N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | isline4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | isline4.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
| 5 | isline4.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isline3 39779 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 7 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 8 | 1, 3 | atbase 39291 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 11 | eqid 2736 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 12 | isline4.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 13 | 1, 11, 2, 12, 3 | cvrval3 39416 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋))) |
| 14 | 7, 9, 10, 13 | syl3anc 1372 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋))) |
| 15 | hlatl 39362 | . . . . . . . . 9 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 16 | 15 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
| 18 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑝 ∈ 𝐴) | |
| 19 | 11, 3 | atncmp 39314 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
| 20 | 16, 17, 18, 19 | syl3anc 1372 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
| 21 | necom 2993 | . . . . . . 7 ⊢ (𝑞 ≠ 𝑝 ↔ 𝑝 ≠ 𝑞) | |
| 22 | 20, 21 | bitrdi 287 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑝 ≠ 𝑞)) |
| 23 | eqcom 2743 | . . . . . . 7 ⊢ ((𝑝(join‘𝐾)𝑞) = 𝑋 ↔ 𝑋 = (𝑝(join‘𝐾)𝑞)) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((𝑝(join‘𝐾)𝑞) = 𝑋 ↔ 𝑋 = (𝑝(join‘𝐾)𝑞))) |
| 25 | 22, 24 | anbi12d 632 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 26 | 25 | rexbidva 3176 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 27 | 14, 26 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 28 | 27 | rexbidva 3176 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 𝑝𝐶𝑋 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 29 | 6, 28 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 ⋖ ccvr 39264 Atomscatm 39265 AtLatcal 39266 HLchlt 39352 Linesclines 39497 pmapcpmap 39500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-lines 39504 df-pmap 39507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |