Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline4N Structured version   Visualization version   GIF version

Theorem isline4N 39738
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
isline4.b 𝐵 = (Base‘𝐾)
isline4.c 𝐶 = ( ⋖ ‘𝐾)
isline4.a 𝐴 = (Atoms‘𝐾)
isline4.n 𝑁 = (Lines‘𝐾)
isline4.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
isline4N ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   𝑀,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑁(𝑝)

Proof of Theorem isline4N
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 isline4.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2734 . . 3 (join‘𝐾) = (join‘𝐾)
3 isline4.a . . 3 𝐴 = (Atoms‘𝐾)
4 isline4.n . . 3 𝑁 = (Lines‘𝐾)
5 isline4.m . . 3 𝑀 = (pmap‘𝐾)
61, 2, 3, 4, 5isline3 39737 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
7 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
81, 3atbase 39249 . . . . . 6 (𝑝𝐴𝑝𝐵)
98adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
10 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
11 eqid 2734 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 isline4.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
131, 11, 2, 12, 3cvrval3 39374 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋)))
147, 9, 10, 13syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋)))
15 hlatl 39320 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1615ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
17 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
18 simplr 768 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑝𝐴)
1911, 3atncmp 39272 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑝𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
2016, 17, 18, 19syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
21 necom 2984 . . . . . . 7 (𝑞𝑝𝑝𝑞)
2220, 21bitrdi 287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑝𝑞))
23 eqcom 2741 . . . . . . 7 ((𝑝(join‘𝐾)𝑞) = 𝑋𝑋 = (𝑝(join‘𝐾)𝑞))
2423a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝(join‘𝐾)𝑞) = 𝑋𝑋 = (𝑝(join‘𝐾)𝑞)))
2522, 24anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2625rexbidva 3164 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2714, 26bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
2827rexbidva 3164 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 𝑝𝐶𝑋 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝(join‘𝐾)𝑞))))
296, 28bitr4d 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17229  lecple 17280  joincjn 18327  ccvr 39222  Atomscatm 39223  AtLatcal 39224  HLchlt 39310  Linesclines 39455  pmapcpmap 39458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-lat 18446  df-clat 18513  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-lines 39462  df-pmap 39465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator