| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isline4N | Structured version Visualization version GIF version | ||
| Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isline4.b | ⊢ 𝐵 = (Base‘𝐾) |
| isline4.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| isline4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline4.n | ⊢ 𝑁 = (Lines‘𝐾) |
| isline4.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| isline4N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2736 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | isline4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | isline4.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
| 5 | isline4.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isline3 39800 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 7 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 8 | 1, 3 | atbase 39312 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 11 | eqid 2736 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 12 | isline4.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 13 | 1, 11, 2, 12, 3 | cvrval3 39437 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋))) |
| 14 | 7, 9, 10, 13 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋))) |
| 15 | hlatl 39383 | . . . . . . . . 9 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 16 | 15 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 17 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
| 18 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑝 ∈ 𝐴) | |
| 19 | 11, 3 | atncmp 39335 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
| 21 | necom 2986 | . . . . . . 7 ⊢ (𝑞 ≠ 𝑝 ↔ 𝑝 ≠ 𝑞) | |
| 22 | 20, 21 | bitrdi 287 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑝 ≠ 𝑞)) |
| 23 | eqcom 2743 | . . . . . . 7 ⊢ ((𝑝(join‘𝐾)𝑞) = 𝑋 ↔ 𝑋 = (𝑝(join‘𝐾)𝑞)) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((𝑝(join‘𝐾)𝑞) = 𝑋 ↔ 𝑋 = (𝑝(join‘𝐾)𝑞))) |
| 25 | 22, 24 | anbi12d 632 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 26 | 25 | rexbidva 3163 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝(join‘𝐾)𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 27 | 14, 26 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝𝐶𝑋 ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 28 | 27 | rexbidva 3163 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 𝑝𝐶𝑋 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝(join‘𝐾)𝑞)))) |
| 29 | 6, 28 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑀‘𝑋) ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 joincjn 18328 ⋖ ccvr 39285 Atomscatm 39286 AtLatcal 39287 HLchlt 39373 Linesclines 39518 pmapcpmap 39521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-lines 39525 df-pmap 39528 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |