Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline4N Structured version   Visualization version   GIF version

Theorem isline4N 38643
Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
isline4.b 𝐡 = (Baseβ€˜πΎ)
isline4.c 𝐢 = ( β‹– β€˜πΎ)
isline4.a 𝐴 = (Atomsβ€˜πΎ)
isline4.n 𝑁 = (Linesβ€˜πΎ)
isline4.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
isline4N ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ ((π‘€β€˜π‘‹) ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   𝑀,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐢(𝑝)   𝑁(𝑝)

Proof of Theorem isline4N
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 isline4.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2732 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
3 isline4.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 isline4.n . . 3 𝑁 = (Linesβ€˜πΎ)
5 isline4.m . . 3 𝑀 = (pmapβ€˜πΎ)
61, 2, 3, 4, 5isline3 38642 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ ((π‘€β€˜π‘‹) ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))))
7 simpll 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝐾 ∈ HL)
81, 3atbase 38154 . . . . . 6 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
98adantl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝑝 ∈ 𝐡)
10 simplr 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝑋 ∈ 𝐡)
11 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
12 isline4.c . . . . . 6 𝐢 = ( β‹– β€˜πΎ)
131, 11, 2, 12, 3cvrval3 38279 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑝𝐢𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝(joinβ€˜πΎ)π‘ž) = 𝑋)))
147, 9, 10, 13syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝𝐢𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝(joinβ€˜πΎ)π‘ž) = 𝑋)))
15 hlatl 38225 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
1615ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ 𝐾 ∈ AtLat)
17 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ π‘ž ∈ 𝐴)
18 simplr 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ 𝑝 ∈ 𝐴)
1911, 3atncmp 38177 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ π‘ž ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ π‘ž β‰  𝑝))
2016, 17, 18, 19syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ π‘ž β‰  𝑝))
21 necom 2994 . . . . . . 7 (π‘ž β‰  𝑝 ↔ 𝑝 β‰  π‘ž)
2220, 21bitrdi 286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ 𝑝 β‰  π‘ž))
23 eqcom 2739 . . . . . . 7 ((𝑝(joinβ€˜πΎ)π‘ž) = 𝑋 ↔ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))
2423a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ ((𝑝(joinβ€˜πΎ)π‘ž) = 𝑋 ↔ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž)))
2522, 24anbi12d 631 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ ((Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝(joinβ€˜πΎ)π‘ž) = 𝑋) ↔ (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))))
2625rexbidva 3176 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝(joinβ€˜πΎ)π‘ž) = 𝑋) ↔ βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))))
2714, 26bitrd 278 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝𝐢𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))))
2827rexbidva 3176 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝(joinβ€˜πΎ)π‘ž))))
296, 28bitr4d 281 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ ((π‘€β€˜π‘‹) ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263   β‹– ccvr 38127  Atomscatm 38128  AtLatcal 38129  HLchlt 38215  Linesclines 38360  pmapcpmap 38363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-lines 38367  df-pmap 38370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator