Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0 Structured version   Visualization version   GIF version

Theorem lhp2at0 40019
Description: Join and meet with different atoms under co-atom 𝑊. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
lhp2at0.l = (le‘𝐾)
lhp2at0.j = (join‘𝐾)
lhp2at0.m = (meet‘𝐾)
lhp2at0.z 0 = (0.‘𝐾)
lhp2at0.a 𝐴 = (Atoms‘𝐾)
lhp2at0.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2at0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )

Proof of Theorem lhp2at0
StepHypRef Expression
1 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
2 hlol 39347 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ OL)
4 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑃𝐴)
5 simp2l 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈𝐴)
6 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2at0.j . . . . . 6 = (join‘𝐾)
8 lhp2at0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39353 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
101, 4, 5, 9syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 𝑈) ∈ (Base‘𝐾))
11 simp11r 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
12 lhp2at0.h . . . . . 6 𝐻 = (LHyp‘𝐾)
136, 12lhpbase 39985 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1411, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊 ∈ (Base‘𝐾))
15 simp3l 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
166, 8atbase 39275 . . . . 5 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
1715, 16syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
18 lhp2at0.m . . . . 5 = (meet‘𝐾)
196, 18latmassOLD 39215 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾))) → (((𝑃 𝑈) 𝑊) 𝑉) = ((𝑃 𝑈) (𝑊 𝑉)))
203, 10, 14, 17, 19syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (((𝑃 𝑈) 𝑊) 𝑉) = ((𝑃 𝑈) (𝑊 𝑉)))
21 lhp2at0.l . . . . . . . . 9 = (le‘𝐾)
22 lhp2at0.z . . . . . . . . 9 0 = (0.‘𝐾)
2321, 18, 22, 8, 12lhpmat 40017 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
24233adant3 1132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) → (𝑃 𝑊) = 0 )
25243ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 𝑊) = 0 )
2625oveq1d 7384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑊) 𝑈) = ( 0 𝑈))
276, 8atbase 39275 . . . . . . 7 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
285, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈 ∈ (Base‘𝐾))
29 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈 𝑊)
306, 21, 7, 18, 8atmod4i2 39854 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
311, 4, 28, 14, 29, 30syl131anc 1385 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
326, 7, 22olj02 39212 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ( 0 𝑈) = 𝑈)
333, 28, 32syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ( 0 𝑈) = 𝑈)
3426, 31, 333eqtr3d 2772 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑊) = 𝑈)
3534oveq1d 7384 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (((𝑃 𝑈) 𝑊) 𝑉) = (𝑈 𝑉))
3620, 35eqtr3d 2766 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) (𝑊 𝑉)) = (𝑈 𝑉))
37 simp3r 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
381hllatd 39350 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ Lat)
396, 21, 18latleeqm2 18409 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑉 𝑊 ↔ (𝑊 𝑉) = 𝑉))
4038, 17, 14, 39syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 𝑊 ↔ (𝑊 𝑉) = 𝑉))
4137, 40mpbid 232 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑊 𝑉) = 𝑉)
4241oveq2d 7385 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) (𝑊 𝑉)) = ((𝑃 𝑈) 𝑉))
43 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈𝑉)
44 hlatl 39346 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
451, 44syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ AtLat)
4618, 22, 8atnem0 39304 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴𝑉𝐴) → (𝑈𝑉 ↔ (𝑈 𝑉) = 0 ))
4745, 5, 15, 46syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑈𝑉 ↔ (𝑈 𝑉) = 0 ))
4843, 47mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑈 𝑉) = 0 )
4936, 42, 483eqtr3d 2772 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  0.cp0 18362  Latclat 18372  OLcol 39160  Atomscatm 39249  AtLatcal 39250  HLchlt 39336  LHypclh 39971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975
This theorem is referenced by:  lhp2atnle  40020  cdlemh2  40803
  Copyright terms: Public domain W3C validator