Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0 Structured version   Visualization version   GIF version

Theorem lhp2at0 39206
Description: Join and meet with different atoms under co-atom π‘Š. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
lhp2at0.l ≀ = (leβ€˜πΎ)
lhp2at0.j ∨ = (joinβ€˜πΎ)
lhp2at0.m ∧ = (meetβ€˜πΎ)
lhp2at0.z 0 = (0.β€˜πΎ)
lhp2at0.a 𝐴 = (Atomsβ€˜πΎ)
lhp2at0.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhp2at0 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ 𝑉) = 0 )

Proof of Theorem lhp2at0
StepHypRef Expression
1 simp11l 1282 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2 hlol 38534 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝐾 ∈ OL)
4 simp12l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
5 simp2l 1197 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘ˆ ∈ 𝐴)
6 eqid 2730 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 lhp2at0.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 lhp2at0.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8hlatjcl 38540 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
101, 4, 5, 9syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
11 simp11r 1283 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
12 lhp2at0.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
136, 12lhpbase 39172 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
15 simp3l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝑉 ∈ 𝐴)
166, 8atbase 38462 . . . . 5 (𝑉 ∈ 𝐴 β†’ 𝑉 ∈ (Baseβ€˜πΎ))
1715, 16syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝑉 ∈ (Baseβ€˜πΎ))
18 lhp2at0.m . . . . 5 ∧ = (meetβ€˜πΎ)
196, 18latmassOLD 38402 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ) ∧ 𝑉 ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ π‘ˆ) ∧ π‘Š) ∧ 𝑉) = ((𝑃 ∨ π‘ˆ) ∧ (π‘Š ∧ 𝑉)))
203, 10, 14, 17, 19syl13anc 1370 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (((𝑃 ∨ π‘ˆ) ∧ π‘Š) ∧ 𝑉) = ((𝑃 ∨ π‘ˆ) ∧ (π‘Š ∧ 𝑉)))
21 lhp2at0.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
22 lhp2at0.z . . . . . . . . 9 0 = (0.β€˜πΎ)
2321, 18, 22, 8, 12lhpmat 39204 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∧ π‘Š) = 0 )
24233adant3 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) β†’ (𝑃 ∧ π‘Š) = 0 )
25243ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (𝑃 ∧ π‘Š) = 0 )
2625oveq1d 7426 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∧ π‘Š) ∨ π‘ˆ) = ( 0 ∨ π‘ˆ))
276, 8atbase 38462 . . . . . . 7 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
285, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
29 simp2r 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘ˆ ≀ π‘Š)
306, 21, 7, 18, 8atmod4i2 39041 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ π‘Š) β†’ ((𝑃 ∧ π‘Š) ∨ π‘ˆ) = ((𝑃 ∨ π‘ˆ) ∧ π‘Š))
311, 4, 28, 14, 29, 30syl131anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∧ π‘Š) ∨ π‘ˆ) = ((𝑃 ∨ π‘ˆ) ∧ π‘Š))
326, 7, 22olj02 38399 . . . . . 6 ((𝐾 ∈ OL ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ( 0 ∨ π‘ˆ) = π‘ˆ)
333, 28, 32syl2anc 582 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ( 0 ∨ π‘ˆ) = π‘ˆ)
3426, 31, 333eqtr3d 2778 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ π‘Š) = π‘ˆ)
3534oveq1d 7426 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (((𝑃 ∨ π‘ˆ) ∧ π‘Š) ∧ 𝑉) = (π‘ˆ ∧ 𝑉))
3620, 35eqtr3d 2772 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ (π‘Š ∧ 𝑉)) = (π‘ˆ ∧ 𝑉))
37 simp3r 1200 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝑉 ≀ π‘Š)
381hllatd 38537 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
396, 21, 18latleeqm2 18425 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ (𝑉 ≀ π‘Š ↔ (π‘Š ∧ 𝑉) = 𝑉))
4038, 17, 14, 39syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (𝑉 ≀ π‘Š ↔ (π‘Š ∧ 𝑉) = 𝑉))
4137, 40mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (π‘Š ∧ 𝑉) = 𝑉)
4241oveq2d 7427 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ (π‘Š ∧ 𝑉)) = ((𝑃 ∨ π‘ˆ) ∧ 𝑉))
43 simp13 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ π‘ˆ β‰  𝑉)
44 hlatl 38533 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
451, 44syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ 𝐾 ∈ AtLat)
4618, 22, 8atnem0 38491 . . . 4 ((𝐾 ∈ AtLat ∧ π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (π‘ˆ β‰  𝑉 ↔ (π‘ˆ ∧ 𝑉) = 0 ))
4745, 5, 15, 46syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (π‘ˆ β‰  𝑉 ↔ (π‘ˆ ∧ 𝑉) = 0 ))
4843, 47mpbid 231 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ (π‘ˆ ∧ 𝑉) = 0 )
4936, 42, 483eqtr3d 2778 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ 𝑉) = 0 )
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  0.cp0 18380  Latclat 18388  OLcol 38347  Atomscatm 38436  AtLatcal 38437  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162
This theorem is referenced by:  lhp2atnle  39207  cdlemh2  39990
  Copyright terms: Public domain W3C validator