Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc4 | Structured version Visualization version GIF version |
Description: A more general version of axdc3 10141 that allows the function 𝐹 to vary with 𝑘. (Contributed by Mario Carneiro, 31-Jan-2013.) |
Ref | Expression |
---|---|
axdc4.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc4 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc4.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eqid 2738 | . 2 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥))) = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥))) | |
3 | 1, 2 | axdc4lem 10142 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 × cxp 5578 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-dc 10133 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 |
This theorem is referenced by: axcclem 10144 axdc4uzlem 13631 |
Copyright terms: Public domain | W3C validator |