| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc4 | Structured version Visualization version GIF version | ||
| Description: A more general version of axdc3 10414 that allows the function 𝐹 to vary with 𝑘. (Contributed by Mario Carneiro, 31-Jan-2013.) |
| Ref | Expression |
|---|---|
| axdc4.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| axdc4 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eqid 2730 | . 2 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥))) = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ({suc 𝑛} × (𝑛𝐹𝑥))) | |
| 3 | 1, 2 | axdc4lem 10415 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 × cxp 5639 suc csuc 6337 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-dc 10406 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 |
| This theorem is referenced by: axcclem 10417 axdc4uzlem 13955 |
| Copyright terms: Public domain | W3C validator |