| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardsdomel | Structured version Visualization version GIF version | ||
| Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.) |
| Ref | Expression |
|---|---|
| cardsdomel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9838 | . . . . . . 7 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 2 | 1 | ensymd 8922 | . . . . . 6 ⊢ (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵)) |
| 3 | sdomentr 9019 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵)) | |
| 4 | 2, 3 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵)) |
| 5 | ssdomg 8917 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴)) | |
| 6 | cardon 9829 | . . . . . . . . 9 ⊢ (card‘𝐵) ∈ On | |
| 7 | domtriord 9031 | . . . . . . . . 9 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) |
| 9 | 5, 8 | sylibd 239 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵))) |
| 10 | 9 | con2d 134 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴)) |
| 11 | ontri1 6336 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
| 12 | 6, 11 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 13 | 12 | con2bid 354 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴)) |
| 14 | 10, 13 | sylibrd 259 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵))) |
| 15 | 4, 14 | syl5 34 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵))) |
| 16 | 15 | expcomd 416 | . . 3 ⊢ (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵)))) |
| 17 | 16 | imp 406 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵))) |
| 18 | cardsdomelir 9858 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) | |
| 19 | 17, 18 | impbid1 225 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 dom cdm 5614 Oncon0 6302 ‘cfv 6477 ≈ cen 8861 ≼ cdom 8862 ≺ csdm 8863 cardccrd 9820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-card 9824 |
| This theorem is referenced by: iscard 9860 cardval2 9876 infxpenlem 9896 alephnbtwn 9954 alephnbtwn2 9955 alephord2 9959 alephsdom 9969 pwsdompw 10086 inaprc 10719 |
| Copyright terms: Public domain | W3C validator |