| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardsdomel | Structured version Visualization version GIF version | ||
| Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.) |
| Ref | Expression |
|---|---|
| cardsdomel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 9967 | . . . . . . 7 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 2 | 1 | ensymd 9019 | . . . . . 6 ⊢ (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵)) |
| 3 | sdomentr 9125 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵)) | |
| 4 | 2, 3 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵)) |
| 5 | ssdomg 9014 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴)) | |
| 6 | cardon 9958 | . . . . . . . . 9 ⊢ (card‘𝐵) ∈ On | |
| 7 | domtriord 9137 | . . . . . . . . 9 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) | |
| 8 | 6, 7 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) |
| 9 | 5, 8 | sylibd 239 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵))) |
| 10 | 9 | con2d 134 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴)) |
| 11 | ontri1 6386 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
| 12 | 6, 11 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 13 | 12 | con2bid 354 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴)) |
| 14 | 10, 13 | sylibrd 259 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵))) |
| 15 | 4, 14 | syl5 34 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵))) |
| 16 | 15 | expcomd 416 | . . 3 ⊢ (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵)))) |
| 17 | 16 | imp 406 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵))) |
| 18 | cardsdomelir 9987 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) | |
| 19 | 17, 18 | impbid1 225 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ‘cfv 6531 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-card 9953 |
| This theorem is referenced by: iscard 9989 cardval2 10005 infxpenlem 10027 alephnbtwn 10085 alephnbtwn2 10086 alephord2 10090 alephsdom 10100 pwsdompw 10217 inaprc 10850 |
| Copyright terms: Public domain | W3C validator |