MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Structured version   Visualization version   GIF version

Theorem cardsdomel 9915
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel ((𝐴 ∈ On ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 ↔ 𝐴 ∈ (cardβ€˜π΅)))

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 9894 . . . . . . 7 (𝐡 ∈ dom card β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
21ensymd 8948 . . . . . 6 (𝐡 ∈ dom card β†’ 𝐡 β‰ˆ (cardβ€˜π΅))
3 sdomentr 9058 . . . . . 6 ((𝐴 β‰Ί 𝐡 ∧ 𝐡 β‰ˆ (cardβ€˜π΅)) β†’ 𝐴 β‰Ί (cardβ€˜π΅))
42, 3sylan2 594 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝐡 ∈ dom card) β†’ 𝐴 β‰Ί (cardβ€˜π΅))
5 ssdomg 8943 . . . . . . . 8 (𝐴 ∈ On β†’ ((cardβ€˜π΅) βŠ† 𝐴 β†’ (cardβ€˜π΅) β‰Ό 𝐴))
6 cardon 9885 . . . . . . . . 9 (cardβ€˜π΅) ∈ On
7 domtriord 9070 . . . . . . . . 9 (((cardβ€˜π΅) ∈ On ∧ 𝐴 ∈ On) β†’ ((cardβ€˜π΅) β‰Ό 𝐴 ↔ Β¬ 𝐴 β‰Ί (cardβ€˜π΅)))
86, 7mpan 689 . . . . . . . 8 (𝐴 ∈ On β†’ ((cardβ€˜π΅) β‰Ό 𝐴 ↔ Β¬ 𝐴 β‰Ί (cardβ€˜π΅)))
95, 8sylibd 238 . . . . . . 7 (𝐴 ∈ On β†’ ((cardβ€˜π΅) βŠ† 𝐴 β†’ Β¬ 𝐴 β‰Ί (cardβ€˜π΅)))
109con2d 134 . . . . . 6 (𝐴 ∈ On β†’ (𝐴 β‰Ί (cardβ€˜π΅) β†’ Β¬ (cardβ€˜π΅) βŠ† 𝐴))
11 ontri1 6352 . . . . . . . 8 (((cardβ€˜π΅) ∈ On ∧ 𝐴 ∈ On) β†’ ((cardβ€˜π΅) βŠ† 𝐴 ↔ Β¬ 𝐴 ∈ (cardβ€˜π΅)))
126, 11mpan 689 . . . . . . 7 (𝐴 ∈ On β†’ ((cardβ€˜π΅) βŠ† 𝐴 ↔ Β¬ 𝐴 ∈ (cardβ€˜π΅)))
1312con2bid 355 . . . . . 6 (𝐴 ∈ On β†’ (𝐴 ∈ (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) βŠ† 𝐴))
1410, 13sylibrd 259 . . . . 5 (𝐴 ∈ On β†’ (𝐴 β‰Ί (cardβ€˜π΅) β†’ 𝐴 ∈ (cardβ€˜π΅)))
154, 14syl5 34 . . . 4 (𝐴 ∈ On β†’ ((𝐴 β‰Ί 𝐡 ∧ 𝐡 ∈ dom card) β†’ 𝐴 ∈ (cardβ€˜π΅)))
1615expcomd 418 . . 3 (𝐴 ∈ On β†’ (𝐡 ∈ dom card β†’ (𝐴 β‰Ί 𝐡 β†’ 𝐴 ∈ (cardβ€˜π΅))))
1716imp 408 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ 𝐴 ∈ (cardβ€˜π΅)))
18 cardsdomelir 9914 . 2 (𝐴 ∈ (cardβ€˜π΅) β†’ 𝐴 β‰Ί 𝐡)
1917, 18impbid1 224 1 ((𝐴 ∈ On ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 ↔ 𝐴 ∈ (cardβ€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∈ wcel 2107   βŠ† wss 3911   class class class wbr 5106  dom cdm 5634  Oncon0 6318  β€˜cfv 6497   β‰ˆ cen 8883   β‰Ό cdom 8884   β‰Ί csdm 8885  cardccrd 9876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-card 9880
This theorem is referenced by:  iscard  9916  cardval2  9932  infxpenlem  9954  alephnbtwn  10012  alephnbtwn2  10013  alephord2  10017  alephsdom  10027  pwsdompw  10145  inaprc  10777
  Copyright terms: Public domain W3C validator