MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Structured version   Visualization version   GIF version

Theorem cardsdomel 9927
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 9906 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
21ensymd 8976 . . . . . 6 (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵))
3 sdomentr 9075 . . . . . 6 ((𝐴𝐵𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵))
42, 3sylan2 593 . . . . 5 ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵))
5 ssdomg 8971 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴))
6 cardon 9897 . . . . . . . . 9 (card‘𝐵) ∈ On
7 domtriord 9087 . . . . . . . . 9 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
86, 7mpan 690 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
95, 8sylibd 239 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵)))
109con2d 134 . . . . . 6 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴))
11 ontri1 6366 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
126, 11mpan 690 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1312con2bid 354 . . . . . 6 (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴))
1410, 13sylibrd 259 . . . . 5 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵)))
154, 14syl5 34 . . . 4 (𝐴 ∈ On → ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵)))
1615expcomd 416 . . 3 (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴𝐵𝐴 ∈ (card‘𝐵))))
1716imp 406 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
18 cardsdomelir 9926 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
1917, 18impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3914   class class class wbr 5107  dom cdm 5638  Oncon0 6332  cfv 6511  cen 8915  cdom 8916  csdm 8917  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892
This theorem is referenced by:  iscard  9928  cardval2  9944  infxpenlem  9966  alephnbtwn  10024  alephnbtwn2  10025  alephord2  10029  alephsdom  10039  pwsdompw  10156  inaprc  10789
  Copyright terms: Public domain W3C validator