MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Structured version   Visualization version   GIF version

Theorem cardsdomel 9873
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 9852 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
21ensymd 8933 . . . . . 6 (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵))
3 sdomentr 9030 . . . . . 6 ((𝐴𝐵𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵))
42, 3sylan2 593 . . . . 5 ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵))
5 ssdomg 8928 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴))
6 cardon 9843 . . . . . . . . 9 (card‘𝐵) ∈ On
7 domtriord 9042 . . . . . . . . 9 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
86, 7mpan 690 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
95, 8sylibd 239 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵)))
109con2d 134 . . . . . 6 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴))
11 ontri1 6346 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
126, 11mpan 690 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1312con2bid 354 . . . . . 6 (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴))
1410, 13sylibrd 259 . . . . 5 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵)))
154, 14syl5 34 . . . 4 (𝐴 ∈ On → ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵)))
1615expcomd 416 . . 3 (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴𝐵𝐴 ∈ (card‘𝐵))))
1716imp 406 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
18 cardsdomelir 9872 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
1917, 18impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  wss 3897   class class class wbr 5093  dom cdm 5619  Oncon0 6312  cfv 6487  cen 8872  cdom 8873  csdm 8874  cardccrd 9834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-card 9838
This theorem is referenced by:  iscard  9874  cardval2  9890  infxpenlem  9910  alephnbtwn  9968  alephnbtwn2  9969  alephord2  9973  alephsdom  9983  pwsdompw  10100  inaprc  10733
  Copyright terms: Public domain W3C validator