Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardsdomel | Structured version Visualization version GIF version |
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.) |
Ref | Expression |
---|---|
cardsdomel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9642 | . . . . . . 7 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
2 | 1 | ensymd 8746 | . . . . . 6 ⊢ (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵)) |
3 | sdomentr 8847 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵)) | |
4 | 2, 3 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵)) |
5 | ssdomg 8741 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴)) | |
6 | cardon 9633 | . . . . . . . . 9 ⊢ (card‘𝐵) ∈ On | |
7 | domtriord 8859 | . . . . . . . . 9 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) | |
8 | 6, 7 | mpan 686 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵))) |
9 | 5, 8 | sylibd 238 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵))) |
10 | 9 | con2d 134 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴)) |
11 | ontri1 6285 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
12 | 6, 11 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
13 | 12 | con2bid 354 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴)) |
14 | 10, 13 | sylibrd 258 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵))) |
15 | 4, 14 | syl5 34 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ≺ 𝐵 ∧ 𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵))) |
16 | 15 | expcomd 416 | . . 3 ⊢ (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵)))) |
17 | 16 | imp 406 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → 𝐴 ∈ (card‘𝐵))) |
18 | cardsdomelir 9662 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) | |
19 | 17, 18 | impbid1 224 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 ↔ 𝐴 ∈ (card‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 |
This theorem is referenced by: iscard 9664 cardval2 9680 infxpenlem 9700 alephnbtwn 9758 alephnbtwn2 9759 alephord2 9763 alephsdom 9773 pwsdompw 9891 inaprc 10523 |
Copyright terms: Public domain | W3C validator |