MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Structured version   Visualization version   GIF version

Theorem cardsdomel 9906
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 9885 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
21ensymd 8954 . . . . . 6 (𝐵 ∈ dom card → 𝐵 ≈ (card‘𝐵))
3 sdomentr 9053 . . . . . 6 ((𝐴𝐵𝐵 ≈ (card‘𝐵)) → 𝐴 ≺ (card‘𝐵))
42, 3sylan2 593 . . . . 5 ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ≺ (card‘𝐵))
5 ssdomg 8949 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → (card‘𝐵) ≼ 𝐴))
6 cardon 9876 . . . . . . . . 9 (card‘𝐵) ∈ On
7 domtriord 9065 . . . . . . . . 9 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
86, 7mpan 690 . . . . . . . 8 (𝐴 ∈ On → ((card‘𝐵) ≼ 𝐴 ↔ ¬ 𝐴 ≺ (card‘𝐵)))
95, 8sylibd 239 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 → ¬ 𝐴 ≺ (card‘𝐵)))
109con2d 134 . . . . . 6 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → ¬ (card‘𝐵) ⊆ 𝐴))
11 ontri1 6355 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
126, 11mpan 690 . . . . . . 7 (𝐴 ∈ On → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1312con2bid 354 . . . . . 6 (𝐴 ∈ On → (𝐴 ∈ (card‘𝐵) ↔ ¬ (card‘𝐵) ⊆ 𝐴))
1410, 13sylibrd 259 . . . . 5 (𝐴 ∈ On → (𝐴 ≺ (card‘𝐵) → 𝐴 ∈ (card‘𝐵)))
154, 14syl5 34 . . . 4 (𝐴 ∈ On → ((𝐴𝐵𝐵 ∈ dom card) → 𝐴 ∈ (card‘𝐵)))
1615expcomd 416 . . 3 (𝐴 ∈ On → (𝐵 ∈ dom card → (𝐴𝐵𝐴 ∈ (card‘𝐵))))
1716imp 406 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
18 cardsdomelir 9905 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
1917, 18impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ dom card) → (𝐴𝐵𝐴 ∈ (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3911   class class class wbr 5102  dom cdm 5631  Oncon0 6321  cfv 6500  cen 8893  cdom 8894  csdm 8895  cardccrd 9867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6324  df-on 6325  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-card 9871
This theorem is referenced by:  iscard  9907  cardval2  9923  infxpenlem  9945  alephnbtwn  10003  alephnbtwn2  10004  alephord2  10008  alephsdom  10018  pwsdompw  10135  inaprc  10768
  Copyright terms: Public domain W3C validator