![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsdomel | Structured version Visualization version GIF version |
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.) |
Ref | Expression |
---|---|
cardsdomel | β’ ((π΄ β On β§ π΅ β dom card) β (π΄ βΊ π΅ β π΄ β (cardβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9948 | . . . . . . 7 β’ (π΅ β dom card β (cardβπ΅) β π΅) | |
2 | 1 | ensymd 9001 | . . . . . 6 β’ (π΅ β dom card β π΅ β (cardβπ΅)) |
3 | sdomentr 9111 | . . . . . 6 β’ ((π΄ βΊ π΅ β§ π΅ β (cardβπ΅)) β π΄ βΊ (cardβπ΅)) | |
4 | 2, 3 | sylan2 594 | . . . . 5 β’ ((π΄ βΊ π΅ β§ π΅ β dom card) β π΄ βΊ (cardβπ΅)) |
5 | ssdomg 8996 | . . . . . . . 8 β’ (π΄ β On β ((cardβπ΅) β π΄ β (cardβπ΅) βΌ π΄)) | |
6 | cardon 9939 | . . . . . . . . 9 β’ (cardβπ΅) β On | |
7 | domtriord 9123 | . . . . . . . . 9 β’ (((cardβπ΅) β On β§ π΄ β On) β ((cardβπ΅) βΌ π΄ β Β¬ π΄ βΊ (cardβπ΅))) | |
8 | 6, 7 | mpan 689 | . . . . . . . 8 β’ (π΄ β On β ((cardβπ΅) βΌ π΄ β Β¬ π΄ βΊ (cardβπ΅))) |
9 | 5, 8 | sylibd 238 | . . . . . . 7 β’ (π΄ β On β ((cardβπ΅) β π΄ β Β¬ π΄ βΊ (cardβπ΅))) |
10 | 9 | con2d 134 | . . . . . 6 β’ (π΄ β On β (π΄ βΊ (cardβπ΅) β Β¬ (cardβπ΅) β π΄)) |
11 | ontri1 6399 | . . . . . . . 8 β’ (((cardβπ΅) β On β§ π΄ β On) β ((cardβπ΅) β π΄ β Β¬ π΄ β (cardβπ΅))) | |
12 | 6, 11 | mpan 689 | . . . . . . 7 β’ (π΄ β On β ((cardβπ΅) β π΄ β Β¬ π΄ β (cardβπ΅))) |
13 | 12 | con2bid 355 | . . . . . 6 β’ (π΄ β On β (π΄ β (cardβπ΅) β Β¬ (cardβπ΅) β π΄)) |
14 | 10, 13 | sylibrd 259 | . . . . 5 β’ (π΄ β On β (π΄ βΊ (cardβπ΅) β π΄ β (cardβπ΅))) |
15 | 4, 14 | syl5 34 | . . . 4 β’ (π΄ β On β ((π΄ βΊ π΅ β§ π΅ β dom card) β π΄ β (cardβπ΅))) |
16 | 15 | expcomd 418 | . . 3 β’ (π΄ β On β (π΅ β dom card β (π΄ βΊ π΅ β π΄ β (cardβπ΅)))) |
17 | 16 | imp 408 | . 2 β’ ((π΄ β On β§ π΅ β dom card) β (π΄ βΊ π΅ β π΄ β (cardβπ΅))) |
18 | cardsdomelir 9968 | . 2 β’ (π΄ β (cardβπ΅) β π΄ βΊ π΅) | |
19 | 17, 18 | impbid1 224 | 1 β’ ((π΄ β On β§ π΅ β dom card) β (π΄ βΊ π΅ β π΄ β (cardβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β wcel 2107 β wss 3949 class class class wbr 5149 dom cdm 5677 Oncon0 6365 βcfv 6544 β cen 8936 βΌ cdom 8937 βΊ csdm 8938 cardccrd 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-card 9934 |
This theorem is referenced by: iscard 9970 cardval2 9986 infxpenlem 10008 alephnbtwn 10066 alephnbtwn2 10067 alephord2 10071 alephsdom 10081 pwsdompw 10199 inaprc 10831 |
Copyright terms: Public domain | W3C validator |