Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumclf | Structured version Visualization version GIF version |
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsumcl 15310 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumclf.ph | ⊢ Ⅎ𝑘𝜑 |
fsumclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
fsumclf | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1a 3834 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
2 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
3 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
4 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑗𝐵 | |
5 | nfcsb1v 3845 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
6 | 1, 2, 3, 4, 5 | cbvsum 15272 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵) |
8 | fsumclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | fsumclf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1922 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
11 | 9, 10 | nfan 1907 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
12 | 5 | nfel1 2921 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
13 | 11, 12 | nfim 1904 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
14 | eleq1w 2821 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
15 | 14 | anbi2d 632 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
16 | 1 | eleq1d 2823 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
17 | 15, 16 | imbi12d 348 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
18 | fsumclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
19 | 13, 17, 18 | chvarfv 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
20 | 8, 19 | fsumcl 15310 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
21 | 7, 20 | eqeltrd 2839 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2111 ⦋csb 3820 Fincfn 8635 ℂcc 10740 Σcsu 15262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-inf2 9269 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-se 5519 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-isom 6398 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-sup 9071 df-oi 9139 df-card 9568 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-n0 12104 df-z 12190 df-uz 12452 df-rp 12600 df-fz 13109 df-fzo 13252 df-seq 13588 df-exp 13649 df-hash 13910 df-cj 14675 df-re 14676 df-im 14677 df-sqrt 14811 df-abs 14812 df-clim 15062 df-sum 15263 |
This theorem is referenced by: fsumsplit1 15322 dvmptfprodlem 43175 |
Copyright terms: Public domain | W3C validator |