MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumclf Structured version   Visualization version   GIF version

Theorem fsumclf 15680
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsumcl 15675 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumclf.ph 𝑘𝜑
fsumclf.a (𝜑𝐴 ∈ Fin)
fsumclf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumclf (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fsumclf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3899 . . . 4 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2 nfcv 2895 . . . 4 𝑗𝐴
3 nfcv 2895 . . . 4 𝑘𝐴
4 nfcv 2895 . . . 4 𝑗𝐵
5 nfcsb1v 3910 . . . 4 𝑘𝑗 / 𝑘𝐵
61, 2, 3, 4, 5cbvsum 15637 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵
76a1i 11 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑗𝐴 𝑗 / 𝑘𝐵)
8 fsumclf.a . . 3 (𝜑𝐴 ∈ Fin)
9 fsumclf.ph . . . . . 6 𝑘𝜑
10 nfv 1909 . . . . . 6 𝑘 𝑗𝐴
119, 10nfan 1894 . . . . 5 𝑘(𝜑𝑗𝐴)
125nfel1 2911 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1311, 12nfim 1891 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
14 eleq1w 2808 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1514anbi2d 628 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
161eleq1d 2810 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1715, 16imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
18 fsumclf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1913, 17, 18chvarfv 2225 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
208, 19fsumcl 15675 . 2 (𝜑 → Σ𝑗𝐴 𝑗 / 𝑘𝐵 ∈ ℂ)
217, 20eqeltrd 2825 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  csb 3885  Fincfn 8934  cc 11103  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  fsumsplit1  15687  dvmptfprodlem  45111
  Copyright terms: Public domain W3C validator