Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones12a Structured version   Visualization version   GIF version

Theorem sticksstones12a 40102
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.)
Hypotheses
Ref Expression
sticksstones12a.1 (𝜑𝑁 ∈ ℕ0)
sticksstones12a.2 (𝜑𝐾 ∈ ℕ)
sticksstones12a.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones12a.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones12a.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones12a.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones12a (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑏,𝑘,𝑥,𝑦   𝐵,𝑎,𝑖,𝑘,𝑙   𝐵,𝑏,𝑖   𝐵,𝑗   𝐹,𝑏,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑓   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙   𝑁,𝑏,𝑔,𝑖,𝑘   𝑎,𝑑,𝑓,𝑗,𝑙,𝑥,𝑦   𝜑,𝑎,𝑖,𝑘,𝑙   𝑔,𝑏,𝑑   𝜑,𝑏   𝜑,𝑗   𝑔,𝑑,𝑖,𝑘   𝜑,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐴(𝑓,𝑔,𝑖,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑑)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑑,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑑,𝑙)   𝐾(𝑑)   𝑁(𝑥,𝑦,𝑑)

Proof of Theorem sticksstones12a
Dummy variables 𝑜 𝑠 𝑟 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones12a.4 . . . . . . 7 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
21a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))))
3 0red 10971 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4 sticksstones12a.2 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℕ)
54nngt0d 12014 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
63, 5ltned 11103 . . . . . . . . . . 11 (𝜑 → 0 ≠ 𝐾)
76necomd 3001 . . . . . . . . . 10 (𝜑𝐾 ≠ 0)
87neneqd 2950 . . . . . . . . 9 (𝜑 → ¬ 𝐾 = 0)
98ad2antrr 723 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → ¬ 𝐾 = 0)
109iffalsed 4476 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))
11 fveq1 6768 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏𝐾) = (𝑑𝐾))
1211oveq2d 7285 . . . . . . . . . . 11 (𝑏 = 𝑑 → ((𝑁 + 𝐾) − (𝑏𝐾)) = ((𝑁 + 𝐾) − (𝑑𝐾)))
13 fveq1 6768 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏‘1) = (𝑑‘1))
1413oveq1d 7284 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑏‘1) − 1) = ((𝑑‘1) − 1))
15 fveq1 6768 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
16 fveq1 6768 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏‘(𝑘 − 1)) = (𝑑‘(𝑘 − 1)))
1715, 16oveq12d 7287 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → ((𝑏𝑘) − (𝑏‘(𝑘 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
1817oveq1d 7284 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
1914, 18ifeq12d 4486 . . . . . . . . . . 11 (𝑏 = 𝑑 → if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
2012, 19ifeq12d 4486 . . . . . . . . . 10 (𝑏 = 𝑑 → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2120adantl 482 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2221adantr 481 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2322mpteq2dva 5179 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2410, 23eqtrd 2780 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
25 simpr 485 . . . . . 6 ((𝜑𝑑𝐵) → 𝑑𝐵)
26 fzfid 13683 . . . . . . 7 ((𝜑𝑑𝐵) → (1...(𝐾 + 1)) ∈ Fin)
2726mptexd 7095 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V)
282, 24, 25, 27fvmptd 6877 . . . . 5 ((𝜑𝑑𝐵) → (𝐺𝑑) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2928fveq2d 6773 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))))
30 sticksstones12a.3 . . . . . . 7 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
3130a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))))
32 simpll 764 . . . . . . . . . . 11 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
3332fveq1d 6771 . . . . . . . . . 10 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎𝑙) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3433sumeq2dv 15405 . . . . . . . . 9 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3534oveq2d 7285 . . . . . . . 8 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)))
3635mpteq2dva 5179 . . . . . . 7 (𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
3736adantl 482 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
38 eleq1 2828 . . . . . . . . . . 11 (((𝑁 + 𝐾) − (𝑑𝐾)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
39 eleq1 2828 . . . . . . . . . . 11 (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
40 sticksstones12a.6 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
4140eleq2i 2832 . . . . . . . . . . . . . . . . . . . 20 (𝑑𝐵𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
42 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
43 feq1 6578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
44 fveq1 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑥) = (𝑑𝑥))
45 fveq1 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑦) = (𝑑𝑦))
4644, 45breq12d 5092 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑑 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑑𝑥) < (𝑑𝑦)))
4746imbi2d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑑 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
48472ralbidv 3125 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
4943, 48anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑑 → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))))
5042, 49elab 3611 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5141, 50bitri 274 . . . . . . . . . . . . . . . . . . 19 (𝑑𝐵 ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5251biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑑𝐵 → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5352adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5453simpld 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
55 1zzd 12343 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
5655adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
574nnnn0d 12285 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ0)
5857nn0zd 12415 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℤ)
5958adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℤ)
604nnge1d 12013 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝐾)
6160adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ≤ 𝐾)
624nnred 11980 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℝ)
6362leidd 11533 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾𝐾)
6463adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾𝐾)
6556, 59, 59, 61, 64elfzd 13238 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝐾 ∈ (1...𝐾))
6654, 65ffvelrnd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ (1...(𝑁 + 𝐾)))
67 elfzle2 13251 . . . . . . . . . . . . . . 15 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6968adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
7069adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
71 elfznn 13276 . . . . . . . . . . . . . . . . 17 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ)
7271nnnn0d 12285 . . . . . . . . . . . . . . . 16 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ0)
7366, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ0)
7473adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ∈ ℕ0)
7574adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ∈ ℕ0)
76 sticksstones12a.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
7776ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝑁 ∈ ℕ0)
7857ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℕ0)
7977, 78nn0addcld 12289 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑁 + 𝐾) ∈ ℕ0)
80 nn0sub 12275 . . . . . . . . . . . . 13 (((𝑑𝐾) ∈ ℕ0 ∧ (𝑁 + 𝐾) ∈ ℕ0) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8175, 79, 80syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8270, 81mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0)
83 eleq1 2828 . . . . . . . . . . . 12 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
84 eleq1 2828 . . . . . . . . . . . 12 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
85 1le1 11595 . . . . . . . . . . . . . . . . . . . 20 1 ≤ 1
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → 1 ≤ 1)
8756, 59, 56, 86, 61elfzd 13238 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → 1 ∈ (1...𝐾))
8854, 87ffvelrnd 6957 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
89 elfznn 13276 . . . . . . . . . . . . . . . . 17 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℕ)
9088, 89syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℕ)
91 nnm1nn0 12266 . . . . . . . . . . . . . . . 16 ((𝑑‘1) ∈ ℕ → ((𝑑‘1) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((𝑑‘1) − 1) ∈ ℕ0)
9392adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ ℕ0)
9493adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → ((𝑑‘1) − 1) ∈ ℕ0)
9594adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℕ0)
9654ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
97 1zzd 12343 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
9859ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
99 elfznn 13276 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℕ)
10099nnzd 12416 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℤ)
101100ad3antlr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
102 elfzle1 13250 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 1 ≤ 𝑘)
103102ad3antlr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
104 neqne 2953 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = (𝐾 + 1) → 𝑘 ≠ (𝐾 + 1))
105104adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≠ (𝐾 + 1))
106105necomd 3001 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ≠ 𝑘)
10799ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℕ)
108107nnred 11980 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℝ)
10962ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℝ)
110 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ∈ ℝ)
111109, 110readdcld 10997 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℝ)
112 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
113112ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
114108, 111, 113leltned 11120 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 < (𝐾 + 1) ↔ (𝐾 + 1) ≠ 𝑘))
115106, 114mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 < (𝐾 + 1))
116100ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℤ)
11759ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℤ)
118 zleltp1 12363 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝐾𝑘 < (𝐾 + 1)))
119116, 117, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘𝐾𝑘 < (𝐾 + 1)))
120115, 119mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘𝐾)
121120adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
12297, 98, 101, 103, 121elfzd 13238 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...𝐾))
12396, 122ffvelrnd 6957 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
124 elfznn 13276 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℕ)
125124nnzd 12416 . . . . . . . . . . . . . . . . 17 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℤ)
126123, 125syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
127 1zzd 12343 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
12858ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
1291283impa 1109 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
130100adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ)
131130adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
1321313impa 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
133132, 127zsubcld 12422 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
134 neqne 2953 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 = 1 → 𝑘 ≠ 1)
1351343ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
136 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 ∈ ℝ)
1371363ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
138132zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
139 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...(𝐾 + 1)))
140139, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
141137, 138, 140leltned 11120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘𝑘 ≠ 1))
142135, 141mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
143127, 132zltp1led 39977 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
144142, 143mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 + 1) ≤ 𝑘)
145 leaddsub 11443 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
146137, 137, 138, 145syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
147144, 146mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
148133zred 12417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
149623ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
150 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
151149, 150readdcld 10997 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐾 + 1) ∈ ℝ)
152151, 150resubcld 11395 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ∈ ℝ)
1531123ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ (𝐾 + 1))
154138, 151, 150, 153lesub1dd 11583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ ((𝐾 + 1) − 1))
15562recnd 10996 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐾 ∈ ℂ)
1561553ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℂ)
157 1cnd 10963 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℂ)
158156, 157pncand 11325 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) = 𝐾)
159633ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾𝐾)
160158, 159eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ≤ 𝐾)
161148, 152, 149, 154, 160letrd 11124 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
162127, 129, 133, 147, 161elfzd 13238 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
163162ad5ant135 1367 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
16496, 163ffvelrnd 6957 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
165 elfznn 13276 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
167166nnzd 12416 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
168126, 167zsubcld 12422 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
169168, 97zsubcld 12422 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
170107adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℕ)
171170nnred 11980 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
172171ltm1d 11899 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) < 𝑘)
173163, 122jca 512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)))
17453simprd 496 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
175174ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
176 breq1 5082 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → (𝑥 < 𝑦 ↔ (𝑘 − 1) < 𝑦))
177 fveq2 6769 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑘 − 1) → (𝑑𝑥) = (𝑑‘(𝑘 − 1)))
178177breq1d 5089 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → ((𝑑𝑥) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑦)))
179176, 178imbi12d 345 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 − 1) → ((𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦))))
180 breq2 5083 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑘 − 1) < 𝑦 ↔ (𝑘 − 1) < 𝑘))
181 fveq2 6769 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → (𝑑𝑦) = (𝑑𝑘))
182181breq2d 5091 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑑‘(𝑘 − 1)) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
183180, 182imbi12d 345 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))))
184179, 183rspc2va 3572 . . . . . . . . . . . . . . . . . 18 ((((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
185173, 175, 184syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
186172, 185mpd 15 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))
187166nnred 11980 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℝ)
188126zred 12417 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℝ)
189187, 188posdifd 11554 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑‘(𝑘 − 1)) < (𝑑𝑘) ↔ 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
190186, 189mpbid 231 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
191 0zd 12323 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ∈ ℤ)
192191, 168zltlem1d 39976 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ↔ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
193190, 192mpbid 231 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
194169, 193jca 512 . . . . . . . . . . . . 13 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
195 elnn0z 12324 . . . . . . . . . . . . 13 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
196194, 195sylibr 233 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0)
19783, 84, 95, 196ifbothda 4503 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0)
19838, 39, 82, 197ifbothda 4503 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0)
199 eqid 2740 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
200198, 199fmptd 6983 . . . . . . . . 9 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0)
201 eqidd 2741 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
202 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → 𝑘 = 𝑖)
203202eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = (𝐾 + 1) ↔ 𝑖 = (𝐾 + 1)))
204202eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = 1 ↔ 𝑖 = 1))
205202fveq2d 6773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑𝑘) = (𝑑𝑖))
206202fvoveq1d 7291 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑖 − 1)))
207205, 206oveq12d 7287 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑖) − (𝑑‘(𝑖 − 1))))
208207oveq1d 7284 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))
209204, 208ifbieq2d 4491 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
210203, 209ifbieq2d 4491 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
211 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
212 ovexd 7304 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
213 ovexd 7304 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ V)
214 ovexd 7304 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) ∈ V)
215213, 214ifcld 4511 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) ∈ V)
216212, 215ifcld 4511 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) ∈ V)
217201, 210, 211, 216fvmptd 6877 . . . . . . . . . . 11 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
218217sumeq2dv 15405 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
219 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 = (𝐾 + 1) ↔ 𝑘 = (𝐾 + 1)))
220 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
221 fveq2 6769 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
222 fvoveq1 7292 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑‘(𝑖 − 1)) = (𝑑‘(𝑘 − 1)))
223221, 222oveq12d 7287 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑑𝑖) − (𝑑‘(𝑖 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
224223oveq1d 7284 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
225220, 224ifbieq2d 4491 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
226219, 225ifbieq2d 4491 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
227 nfcv 2909 . . . . . . . . . . . . 13 𝑘(1...(𝐾 + 1))
228 nfcv 2909 . . . . . . . . . . . . 13 𝑖(1...(𝐾 + 1))
229 nfcv 2909 . . . . . . . . . . . . 13 𝑘if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
230 nfcv 2909 . . . . . . . . . . . . 13 𝑖if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
231226, 227, 228, 229, 230cbvsum 15397 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
232231a1i 11 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
233 eqid 2740 . . . . . . . . . . . . . . . . . 18 1 = 1
234 1p0e1 12089 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
235233, 234eqtr4i 2771 . . . . . . . . . . . . . . . . 17 1 = (1 + 0)
236235a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (1 + 0))
237 0le1 11490 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
238237a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 1)
239136, 3, 62, 136, 60, 238le2addd 11586 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 0) ≤ (𝐾 + 1))
240236, 239eqbrtrd 5101 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (𝐾 + 1))
24158peano2zd 12420 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 + 1) ∈ ℤ)
242 eluz 12587 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
24355, 241, 242syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
244240, 243mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 + 1) ∈ (ℤ‘1))
245244adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (𝐾 + 1) ∈ (ℤ‘1))
246198nn0cnd 12287 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
247 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → (𝑘 = (𝐾 + 1) ↔ (𝐾 + 1) = (𝐾 + 1)))
248 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (𝑘 = 1 ↔ (𝐾 + 1) = 1))
249 fveq2 6769 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑𝑘) = (𝑑‘(𝐾 + 1)))
250 fvoveq1 7292 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑‘(𝑘 − 1)) = (𝑑‘((𝐾 + 1) − 1)))
251249, 250oveq12d 7287 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐾 + 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))))
252251oveq1d 7284 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))
253248, 252ifbieq2d 4491 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))
254247, 253ifbieq2d 4491 . . . . . . . . . . . . 13 (𝑘 = (𝐾 + 1) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))))
255245, 246, 254fsumm1 15453 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))))
256155adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℂ)
257 1cnd 10963 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℂ)
258256, 257pncand 11325 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝐾 + 1) − 1) = 𝐾)
259258oveq2d 7285 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (1...((𝐾 + 1) − 1)) = (1...𝐾))
260259sumeq1d 15403 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
261 eqidd 2741 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝐾 + 1) = (𝐾 + 1))
262261iftrued 4473 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
263260, 262oveq12d 7287 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))))
264 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℤ)
265264adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
266265zred 12417 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℝ)
26762ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
268 1red 10969 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℝ)
269267, 268readdcld 10997 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
270 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘𝐾)
271270adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
272267ltp1d 11897 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 < (𝐾 + 1))
273266, 267, 269, 271, 272lelttrd 11125 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 < (𝐾 + 1))
274266, 273ltned 11103 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ≠ (𝐾 + 1))
275274neneqd 2950 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → ¬ 𝑘 = (𝐾 + 1))
276275iffalsed 4476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
277276sumeq2dv 15405 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
278 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
279 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
280 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → 𝑘 = 1)
281280iftrued 4473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
282281eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
283282oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
284 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ¬ 𝑘 = 1)
285284iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
286285eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
287286oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
288278, 279, 283, 287ifbothda 4503 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
289288sumeq2dv 15405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
290 fzfid 13683 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → (1...𝐾) ∈ Fin)
291 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → ((𝑑‘1) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
292 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
293543adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
294873adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
295293, 294ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
29689nnzd 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℤ)
297295, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
298297adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) ∈ ℤ)
299 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ (1...𝐾))
300293, 299ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
301300, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ ℤ)
302301adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
303293adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
304 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
305593adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
306305adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
3072653impa 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
308307adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
309308, 304zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
310 elfzle1 13250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ (1...𝐾) → 1 ≤ 𝑘)
311299, 310syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ≤ 𝑘)
312311adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
313134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
314312, 313jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 ≤ 𝑘𝑘 ≠ 1))
315 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
316308zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
317315, 316ltlend 11112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 ≤ 𝑘𝑘 ≠ 1)))
318314, 317mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
319304, 308zltlem1d 39976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ 1 ≤ (𝑘 − 1)))
320318, 319mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
321309zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
322306zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
323316lem1d 11900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝑘)
324299, 270syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
325324adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
326321, 316, 322, 323, 325letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
327304, 306, 309, 320, 326elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
328303, 327ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
329328, 165syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
330329nnzd 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
331302, 330zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
332291, 292, 298, 331ifbothda 4503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
3333323expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
334333zcnd 12418 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
335257adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℂ)
336290, 334, 335fsumsub 15490 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1))
337 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → 1 = 𝐾)
338337oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...1) = (1...𝐾))
339338eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...𝐾) = (1...1))
340339sumeq1d 15403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
341 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
342233a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵) → 1 = 1)
343342iftrued 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) = (𝑑‘1))
34490nncnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℂ)
345343, 344eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ)
346 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
347 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑𝑘) = (𝑑‘1))
348 fvoveq1 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑‘(𝑘 − 1)) = (𝑑‘(1 − 1)))
349347, 348oveq12d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘1) − (𝑑‘(1 − 1))))
350346, 349ifbieq2d 4491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
351350fsum1 15449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((1 ∈ ℤ ∧ if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
352341, 345, 351syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
353352, 343eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
354353adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
355 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 = 𝐾 → (𝑑‘1) = (𝑑𝐾))
356355adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (𝑑‘1) = (𝑑𝐾))
357340, 354, 3563eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
35843ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℕ)
359 nnuz 12612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ℕ = (ℤ‘1)
360359a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ℕ = (ℤ‘1))
361358, 360eleqtrd 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ (ℤ‘1))
3623343adantl3 1167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
363 iftrue 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
364361, 362, 363fsum1p 15455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))))
365 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℝ)
366 elfzle1 13250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ((1 + 1)...𝐾) → (1 + 1) ≤ 𝑘)
367366adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 + 1) ≤ 𝑘)
368 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℤ)
369 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ((1 + 1)...𝐾) → 𝑘 ∈ ℤ)
370369adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ∈ ℤ)
371368, 370zltp1led 39977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
372367, 371mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 < 𝑘)
373365, 372ltned 11103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ≠ 𝑘)
374373necomd 3001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ≠ 1)
375374neneqd 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → ¬ 𝑘 = 1)
376375iffalsed 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
377376sumeq2dv 15405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
378377oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
3792563adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℂ)
380 1cnd 10963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℂ)
381379, 380npcand 11328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾)
382381eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 = ((𝐾 − 1) + 1))
383382oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((1 + 1)...𝐾) = ((1 + 1)...((𝐾 − 1) + 1)))
384383sumeq1d 15403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
385384oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
386 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1)) → 𝑘 ∈ ℤ)
387386adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℤ)
388387zcnd 12418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℂ)
389 1cnd 10963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 1 ∈ ℂ)
390388, 389npcand 11328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑘 − 1) + 1) = 𝑘)
391390eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 = ((𝑘 − 1) + 1))
392391fveq2d 6773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → (𝑑𝑘) = (𝑑‘((𝑘 − 1) + 1)))
393392oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
394393sumeq2dv 15405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
395394oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))))
396563adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℤ)
397593adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℤ)
398397, 396zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝐾 − 1) ∈ ℤ)
399543adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
400399adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
401 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℤ)
402397adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℤ)
403 elfznn 13276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ∈ ℕ)
404403adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℕ)
405404nnzd 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℤ)
406405peano2zd 12420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℤ)
407 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℝ)
408404nnred 11980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℝ)
409406zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℝ)
410404nnge1d 12013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ 𝑠)
411408lep1d 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝑠 + 1))
412407, 408, 409, 410, 411letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ (𝑠 + 1))
413 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ≤ (𝐾 − 1))
414413adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝐾 − 1))
415402zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
416 leaddsub 11443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
417408, 407, 415, 416syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
418414, 417mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ≤ 𝐾)
419401, 402, 406, 412, 418elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ (1...𝐾))
420400, 419ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)))
421 elfznn 13276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
422420, 421syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
423422nnzd 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℤ)
424415, 407resubcld 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
425415lem1d 11900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾)
426408, 424, 415, 414, 425letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠𝐾)
427401, 402, 405, 410, 426elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ (1...𝐾))
428400ffvelrnda 6956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) ∧ 𝑠 ∈ (1...𝐾)) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
429427, 428mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
430 elfznn 13276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑𝑠) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑠) ∈ ℕ)
431429, 430syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℕ)
432431nnzd 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℤ)
433423, 432zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℤ)
434433zcnd 12418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℂ)
435 fvoveq1 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑‘(𝑠 + 1)) = (𝑑‘((𝑘 − 1) + 1)))
436 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑𝑠) = (𝑑‘(𝑘 − 1)))
437435, 436oveq12d 7287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 = (𝑘 − 1) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
438396, 396, 398, 434, 437fsumshft 15482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
439438eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))) = Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)))
440439oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))))
441 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 𝑠 → (𝑑𝑜) = (𝑑𝑠))
442 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = (𝑠 + 1) → (𝑑𝑜) = (𝑑‘(𝑠 + 1)))
443 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 1 → (𝑑𝑜) = (𝑑‘1))
444 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = ((𝐾 − 1) + 1) → (𝑑𝑜) = (𝑑‘((𝐾 − 1) + 1)))
445381, 361eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) ∈ (ℤ‘1))
44654adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
4474463impa 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
448447ffvelrnda 6956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...𝐾)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
449448ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
450381oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (1...((𝐾 − 1) + 1)) = (1...𝐾))
451450eleq2d 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) ↔ 𝑜 ∈ (1...𝐾)))
452451imbi1d 342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))) ↔ (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))))
453449, 452mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
454453imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
455 elfznn 13276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑑𝑜) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑜) ∈ ℕ)
456454, 455syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℕ)
457456nncnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℂ)
458441, 442, 443, 444, 398, 445, 457telfsum2 15507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)))
459458oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))))
460381fveq2d 6773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘((𝐾 − 1) + 1)) = (𝑑𝐾))
461460oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)) = ((𝑑𝐾) − (𝑑‘1)))
462461oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))))
4633443adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘1) ∈ ℂ)
46466, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ)
465464nncnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℂ)
4664653adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) ∈ ℂ)
467463, 466pncan3d 11327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
468 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) = (𝑑𝐾))
469467, 468eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
470462, 469eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = (𝑑𝐾))
471459, 470eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = (𝑑𝐾))
472440, 471eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
473395, 472eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
474385, 473eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
475378, 474eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = (𝑑𝐾))
476364, 475eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
4774763expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
478136adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 1 ∈ ℝ)
47962adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℝ)
480478, 479leloed 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (1 ≤ 𝐾 ↔ (1 < 𝐾 ∨ 1 = 𝐾)))
48161, 480mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (1 < 𝐾 ∨ 1 = 𝐾))
482481orcomd 868 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → (1 = 𝐾 ∨ 1 < 𝐾))
483357, 477, 482mpjaodan 956 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
484 fsumconst 15492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1...𝐾) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
485290, 257, 484syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
48657adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℕ0)
487 hashfz1 14050 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
488486, 487syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (♯‘(1...𝐾)) = 𝐾)
489488oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = (𝐾 · 1))
490256mulid1d 10985 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (𝐾 · 1) = 𝐾)
491489, 490eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = 𝐾)
492485, 491eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = 𝐾)
493483, 492oveq12d 7287 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1) = ((𝑑𝐾) − 𝐾))
494336, 493eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = ((𝑑𝐾) − 𝐾))
495289, 494eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑑𝐾) − 𝐾))
496465, 256subcld 11324 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) ∈ ℂ)
497496addid1d 11167 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = ((𝑑𝐾) − 𝐾))
498497eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (((𝑑𝐾) − 𝐾) + 0))
499 0cnd 10961 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → 0 ∈ ℂ)
500496, 499addcomd 11169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = (0 + ((𝑑𝐾) − 𝐾)))
501498, 500eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (0 + ((𝑑𝐾) − 𝐾)))
502495, 501eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 + ((𝑑𝐾) − 𝐾)))
503499, 256, 465subsub2d 11353 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = (0 + ((𝑑𝐾) − 𝐾)))
504503eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → (0 + ((𝑑𝐾) − 𝐾)) = (0 − (𝐾 − (𝑑𝐾))))
505502, 504eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 − (𝐾 − (𝑑𝐾))))
50676nn0cnd 12287 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℂ)
507506adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → 𝑁 ∈ ℂ)
508507subidd 11312 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (𝑁𝑁) = 0)
509508eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → 0 = (𝑁𝑁))
510509oveq1d 7284 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
511505, 510eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
512256, 465subcld 11324 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (𝐾 − (𝑑𝐾)) ∈ ℂ)
513507, 507, 512subsub4d 11355 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → ((𝑁𝑁) − (𝐾 − (𝑑𝐾))) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
514511, 513eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
515507, 256, 465addsubassd 11344 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) = (𝑁 + (𝐾 − (𝑑𝐾))))
516515eqcomd 2746 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → (𝑁 + (𝐾 − (𝑑𝐾))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
517516oveq2d 7285 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
518514, 517eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
519277, 518eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
520 eleq1 2828 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
521 eleq1 2828 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
522 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ ℤ)
523297, 522zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
524523adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℤ)
525522adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
526331, 525zsubcld 12422 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
527520, 521, 524, 526ifbothda 4503 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
5285273expa 1117 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
529276eleq1d 2825 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
530528, 529mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
531290, 530fsumzcl 15437 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
532531zcnd 12418 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
533507, 256addcld 10987 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 + 𝐾) ∈ ℂ)
534533, 465subcld 11324 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℂ)
535532, 534, 507addlsub 11383 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁 ↔ Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾)))))
536519, 535mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
537 eqidd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → 𝑁 = 𝑁)
538536, 537eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
539263, 538eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = 𝑁)
540255, 539eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = 𝑁)
541232, 540eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = 𝑁)
542218, 541eqtrd 2780 . . . . . . . . 9 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)
543200, 542jca 512 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
544 ovex 7302 . . . . . . . . . . 11 (1...(𝐾 + 1)) ∈ V
545544mptex 7094 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V
546 feq1 6578 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0))
547 simpl 483 . . . . . . . . . . . . . 14 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
548547fveq1d 6771 . . . . . . . . . . . . 13 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
549548sumeq2dv 15405 . . . . . . . . . . . 12 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
550549eqeq1d 2742 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
551546, 550anbi12d 631 . . . . . . . . . 10 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
552545, 551elab 3611 . . . . . . . . 9 ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
553552a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
554543, 553mpbird 256 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
555 sticksstones12a.5 . . . . . . . . 9 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
556555a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
557556eqcomd 2746 . . . . . . 7 ((𝜑𝑑𝐵) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
558554, 557eleqtrd 2843 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ 𝐴)
559290mptexd 7095 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) ∈ V)
56031, 37, 558, 559fvmptd 6877 . . . . 5 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
561 eqidd 2741 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
562 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → 𝑘 = 𝑙)
563562eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = (𝐾 + 1) ↔ 𝑙 = (𝐾 + 1)))
564562eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = 1 ↔ 𝑙 = 1))
565562fveq2d 6773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑𝑘) = (𝑑𝑙))
566562oveq1d 7284 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 − 1) = (𝑙 − 1))
567566fveq2d 6773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑙 − 1)))
568565, 567oveq12d 7287 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
569568oveq1d 7284 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
570564, 569ifbieq2d 4491 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
571563, 570ifbieq2d 4491 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
572 1zzd 12343 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℤ)
573583ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
574573adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
575574peano2zd 12420 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℤ)
576 elfzelz 13247 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℤ)
577576adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
578 elfzle1 13250 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 1 ≤ 𝑙)
579578adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
580577zred 12417 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
581 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
582 elfznn 13276 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
583581, 582syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
584583nnred 11980 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
585584adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
586575zred 12417 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
587 elfzle2 13251 . . . . . . . . . . . . . . 15 (𝑙 ∈ (1...𝑗) → 𝑙𝑗)
588587adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝑗)
589623ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
590 1red 10969 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
591589, 590readdcld 10997 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
592 elfzle2 13251 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗𝐾)
593581, 592syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗𝐾)
594589lep1d 11898 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ≤ (𝐾 + 1))
595584, 589, 591, 593, 594letrd 11124 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ≤ (𝐾 + 1))
596595adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ≤ (𝐾 + 1))
597580, 585, 586, 588, 596letrd 11124 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ (𝐾 + 1))
598572, 575, 577, 579, 597elfzd 13238 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...(𝐾 + 1)))
599 ovexd 7304 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
600 ovexd 7304 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ V)
601 ovexd 7304 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ V)
602600, 601ifcld 4511 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ V)
603599, 602ifcld 4511 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) ∈ V)
604561, 571, 598, 603fvmptd 6877 . . . . . . . . . . 11 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
605604sumeq2dv 15405 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
606605oveq2d 7285 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
607 elfznn 13276 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℕ)
608607adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℕ)
609608nnred 11980 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
610589adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℝ)
611 1red 10969 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℝ)
612610, 611readdcld 10997 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
613583adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℕ)
614613nnred 11980 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
615593adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗𝐾)
616609, 614, 610, 588, 615letrd 11124 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝐾)
617610ltp1d 11897 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 < (𝐾 + 1))
618609, 610, 612, 616, 617lelttrd 11125 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 < (𝐾 + 1))
619609, 618ltned 11103 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≠ (𝐾 + 1))
620619neneqd 2950 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ¬ 𝑙 = (𝐾 + 1))
621620iffalsed 4476 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
622621sumeq2dv 15405 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
623622oveq2d 7285 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
624583nnge1d 12013 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝑗)
625553ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
626583nnzd 12416 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℤ)
627 eluz 12587 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
628625, 626, 627syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
629624, 628mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (ℤ‘1))
630 eleq1 2828 . . . . . . . . . . . . . 14 (((𝑑‘1) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
631 eleq1 2828 . . . . . . . . . . . . . 14 ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
632543adant3 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
633 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝜑)
634633, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝐾)
635633, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
636 eluz 12587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
637625, 635, 636syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
638634, 637mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ (ℤ‘1))
639 eluzfz1 13254 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ (ℤ‘1) → 1 ∈ (1...𝐾))
640638, 639syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
641632, 640ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
642641, 89syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℕ)
643642nnzd 12416 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
644643, 625zsubcld 12422 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
645644zcnd 12418 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℂ)
646645adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ ℂ)
647646adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑙 = 1) → ((𝑑‘1) − 1) ∈ ℂ)
648632adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
649635adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
650608nnzd 12416 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
651608nnge1d 12013 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
652572, 649, 650, 651, 616elfzd 13238 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...𝐾))
653648, 652ffvelrnd 6957 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
654 elfzelz 13247 . . . . . . . . . . . . . . . . . . 19 ((𝑑𝑙) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑙) ∈ ℤ)
655653, 654syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ ℤ)
656655adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑𝑙) ∈ ℤ)
657648adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
658 1zzd 12343 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℤ)
659649adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℤ)
660650adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℤ)
661660, 658zsubcld 12422 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℤ)
662 neqne 2953 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 = 1 → 𝑙 ≠ 1)
663662adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ≠ 1)
664611adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℝ)
665609adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℝ)
666651adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ 𝑙)
667664, 665, 666leltned 11120 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙𝑙 ≠ 1))
668663, 667mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 < 𝑙)
669658, 660zltlem1d 39976 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙 ↔ 1 ≤ (𝑙 − 1)))
670668, 669mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ (𝑙 − 1))
671661zred 12417 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℝ)
672610adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℝ)
673665lem1d 11900 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝑙)
674616adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙𝐾)
675671, 665, 672, 673, 674letrd 11124 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝐾)
676658, 659, 661, 670, 675elfzd 13238 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ (1...𝐾))
677657, 676ffvelrnd 6957 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
678 elfzelz 13247 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
679677, 678syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
680656, 679zsubcld 12422 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℤ)
681680, 658zsubcld 12422 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℤ)
682681zcnd 12418 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ)
683630, 631, 647, 682ifbothda 4503 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ)
684 iftrue 4471 . . . . . . . . . . . . 13 (𝑙 = 1 → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = ((𝑑‘1) − 1))
685629, 683, 684fsum1p 15455 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
686685oveq2d 7285 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
687633, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
688687adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℝ)
689688, 688readdcld 10997 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ∈ ℝ)
690 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙 ∈ ℤ)
691690adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℤ)
692691zred 12417 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℝ)
693688ltp1d 11897 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < (1 + 1))
694 elfzle1 13250 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ((1 + 1)...𝑗) → (1 + 1) ≤ 𝑙)
695694adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ≤ 𝑙)
696688, 689, 692, 693, 695ltletrd 11127 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < 𝑙)
697688, 696ltned 11103 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≠ 𝑙)
698697necomd 3001 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ≠ 1)
699698neneqd 2950 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ¬ 𝑙 = 1)
700699iffalsed 4476 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
701700sumeq2dv 15405 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
702701oveq2d 7285 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
703702oveq2d 7285 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
704 fzfid 13683 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...𝑗) ∈ Fin)
705632adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
706 1zzd 12343 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℤ)
707635adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℤ)
708688, 689, 693ltled 11115 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (1 + 1))
709688, 689, 692, 708, 695letrd 11124 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ 𝑙)
710584adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗 ∈ ℝ)
711589adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℝ)
712 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙𝑗)
713712adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝑗)
714593adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗𝐾)
715692, 710, 711, 713, 714letrd 11124 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝐾)
716706, 707, 691, 709, 715elfzd 13238 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ (1...𝐾))
717705, 716ffvelrnd 6957 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
718717, 654syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℤ)
719718zcnd 12418 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℂ)
720691, 706zsubcld 12422 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℤ)
721 leaddsub 11443 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
722688, 688, 692, 721syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
723695, 722mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (𝑙 − 1))
724692, 688resubcld 11395 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℝ)
725692lem1d 11900 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝑙)
726724, 692, 711, 725, 715letrd 11124 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝐾)
727706, 707, 720, 723, 726elfzd 13238 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ (1...𝐾))
728705, 727ffvelrnd 6957 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
729678zcnd 12418 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
730728, 729syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
731719, 730subcld 11324 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
732 1cnd 10963 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℂ)
733704, 731, 732fsumsub 15490 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))
734733oveq2d 7285 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)))
735734oveq2d 7285 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))))
736 1cnd 10963 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℂ)
737 fsumconst 15492 . . . . . . . . . . . . . . . . . . 19 ((((1 + 1)...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
738704, 736, 737syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
739 hashfzp1 14136 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ‘1) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
740629, 739syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
741740oveq1d 7284 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = ((𝑗 − 1) · 1))
742583nncnd 11981 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℂ)
743742, 736subcld 11324 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℂ)
744743mulid1d 10985 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) · 1) = (𝑗 − 1))
745741, 744eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = (𝑗 − 1))
746738, 745eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = (𝑗 − 1))
747746oveq2d 7285 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))
748747oveq2d 7285 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
749748oveq2d 7285 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))))
750704, 731fsumcl 15435 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
751645, 750, 743addsubassd 11344 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
752751eqcomd 2746 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))) = ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)))
753752oveq2d 7285 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
754645, 750addcld 10987 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) ∈ ℂ)
755742, 754, 743addsubassd 11344 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
756755eqcomd 2746 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)))
757742, 754, 743addsubd 11345 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))))
758742, 736nncand 11329 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − (𝑗 − 1)) = 1)
759 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
760626, 625zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℤ)
761632adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
762 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℤ)
763635adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℤ)
764 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℤ)
765764adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ)
766765peano2zd 12420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℤ)
767 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℝ)
768765zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ)
769768, 767readdcld 10997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℝ)
770 elfzle1 13250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 1 ≤ 𝑙)
771770adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ 𝑙)
772768lep1d 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑙 + 1))
773767, 768, 769, 771, 772letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ (𝑙 + 1))
774584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ)
775774, 767resubcld 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ)
776589adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℝ)
777776, 767resubcld 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝐾 − 1) ∈ ℝ)
778 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ≤ (𝑗 − 1))
779778adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑗 − 1))
780593adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗𝐾)
781774, 776, 767, 780lesub1dd 11583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ (𝐾 − 1))
782768, 775, 777, 779, 781letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝐾 − 1))
783 leaddsub 11443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
784768, 767, 776, 783syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
785782, 784mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝐾)
786762, 763, 766, 773, 785elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ (1...𝐾))
787761, 786ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)))
788 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
789787, 788syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
790584, 687resubcld 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℝ)
791584lem1d 11900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝑗)
792790, 584, 589, 791, 593letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝐾)
793792adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ 𝐾)
794768, 775, 776, 779, 793letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙𝐾)
795762, 763, 765, 771, 794elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (1...𝐾))
796761, 795ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
797796, 654syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ ℤ)
798789, 797zsubcld 12422 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℤ)
799798zcnd 12418 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℂ)
800 fvoveq1 7292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑‘(𝑙 + 1)) = (𝑑‘((𝑤 − 1) + 1)))
801 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑𝑙) = (𝑑‘(𝑤 − 1)))
802800, 801oveq12d 7287 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑤 − 1) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
803759, 759, 760, 799, 802fsumshft 15482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
804 oveq1 7276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑙 → (𝑤 − 1) = (𝑙 − 1))
805804fvoveq1d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘((𝑤 − 1) + 1)) = (𝑑‘((𝑙 − 1) + 1)))
806804fveq2d 6773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘(𝑤 − 1)) = (𝑑‘(𝑙 − 1)))
807805, 806oveq12d 7287 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑙 → ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
808 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙((1 + 1)...((𝑗 − 1) + 1))
809 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤((1 + 1)...((𝑗 − 1) + 1))
810 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1)))
811 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
812807, 808, 809, 810, 811cbvsum 15397 . . . . . . . . . . . . . . . . . . . . . . . 24 Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
813812a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
814803, 813eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
815742, 736npcand 11328 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) = 𝑗)
816815oveq2d 7285 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...((𝑗 − 1) + 1)) = ((1 + 1)...𝑗))
817816sumeq1d 15403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
818692recnd 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℂ)
819818, 732npcand 11328 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑙 − 1) + 1) = 𝑙)
820819fveq2d 6773 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘((𝑙 − 1) + 1)) = (𝑑𝑙))
821820oveq1d 7284 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
822821sumeq2dv 15405 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
823817, 822eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
824814, 823eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
825824eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))
826825oveq2d 7285 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))))
827758, 826oveq12d 7287 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))))
828 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑙 → (𝑑𝑟) = (𝑑𝑙))
829 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝑙 + 1) → (𝑑𝑟) = (𝑑‘(𝑙 + 1)))
830 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 1 → (𝑑𝑟) = (𝑑‘1))
831 fveq2 6769 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = ((𝑗 − 1) + 1) → (𝑑𝑟) = (𝑑‘((𝑗 − 1) + 1)))
832815, 629eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ∈ (ℤ‘1))
833632adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
834 1zzd 12343 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℤ)
835635adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℤ)
836 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ∈ ℤ)
837836adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℤ)
838 elfzle1 13250 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 1 ≤ 𝑟)
839838adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ≤ 𝑟)
840837zred 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℝ)
841584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑗 ∈ ℝ)
842 1red 10969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℝ)
843841, 842resubcld 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑗 − 1) ∈ ℝ)
844843, 842readdcld 10997 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ∈ ℝ)
845589adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℝ)
846 elfzle2 13251 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ≤ ((𝑗 − 1) + 1))
847846adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ≤ ((𝑗 − 1) + 1))
848815, 593eqbrtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ≤ 𝐾)
849848adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ≤ 𝐾)
850840, 844, 845, 847, 849letrd 11124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟𝐾)
851834, 835, 837, 839, 850elfzd 13238 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ (1...𝐾))
852833, 851ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ (1...(𝑁 + 𝐾)))
853 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝑟) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑟) ∈ ℤ)
854852, 853syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℤ)
855854zcnd 12418 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℂ)
856828, 829, 830, 831, 760, 832, 855telfsum2 15507 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))
857856oveq2d 7285 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))) = (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
858857oveq2d 7285 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
859815fveq2d 6773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) = (𝑑𝑗))
860632, 581ffvelrnd 6957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ (1...(𝑁 + 𝐾)))
861 elfzelz 13247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑗) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑗) ∈ ℤ)
862860, 861syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ ℤ)
863859, 862eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℤ)
864863zcnd 12418 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℂ)
865642nnred 11980 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℝ)
866865recnd 10996 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℂ)
867864, 866subcld 11324 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)) ∈ ℂ)
868736, 645, 867addassd 10990 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
869868eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
870736, 866pncan3d 11327 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + ((𝑑‘1) − 1)) = (𝑑‘1))
871870oveq1d 7284 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
872866, 864pncan3d 11327 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑‘((𝑗 − 1) + 1)))
873872, 859eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
874871, 873eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
875869, 874eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = (𝑑𝑗))
876858, 875eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (𝑑𝑗))
877827, 876eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (𝑑𝑗))
878757, 877eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑑𝑗))
879756, 878eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = (𝑑𝑗))
880753, 879eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑑𝑗))
881749, 880eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑑𝑗))
882735, 881eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
883703, 882eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
884686, 883eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
885623, 884eqtrd 2780 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
886606, 885eqtrd 2780 . . . . . . . 8 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
8878863expa 1117 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
888887mpteq2dva 5179 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)))
889 nfcv 2909 . . . . . . . 8 𝑞(𝑑𝑗)
890 nfcv 2909 . . . . . . . 8 𝑗(𝑑𝑞)
891 fveq2 6769 . . . . . . . 8 (𝑗 = 𝑞 → (𝑑𝑗) = (𝑑𝑞))
892889, 890, 891cbvmpt 5190 . . . . . . 7 (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞))
893892a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
894888, 893eqtrd 2780 . . . . 5 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
895560, 894eqtrd 2780 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89629, 895eqtrd 2780 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89754ffnd 6598 . . . . 5 ((𝜑𝑑𝐵) → 𝑑 Fn (1...𝐾))
898 dffn5 6823 . . . . . 6 (𝑑 Fn (1...𝐾) ↔ 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
899898biimpi 215 . . . . 5 (𝑑 Fn (1...𝐾) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
900897, 899syl 17 . . . 4 ((𝜑𝑑𝐵) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
901900eqcomd 2746 . . 3 ((𝜑𝑑𝐵) → (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)) = 𝑑)
902896, 901eqtrd 2780 . 2 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
903902ralrimiva 3110 1 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  {cab 2717  wne 2945  wral 3066  Vcvv 3431  ifcif 4465  {csn 4567  cop 4573   class class class wbr 5079  cmpt 5162   Fn wfn 6426  wf 6427  cfv 6431  (class class class)co 7269  Fincfn 8708  cc 10862  cr 10863  0cc0 10864  1c1 10865   + caddc 10867   · cmul 10869   < clt 11002  cle 11003  cmin 11197  cn 11965  0cn0 12225  cz 12311  cuz 12573  ...cfz 13230  chash 14034  Σcsu 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-sup 9171  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-n0 12226  df-z 12312  df-uz 12574  df-rp 12722  df-fz 13231  df-fzo 13374  df-seq 13712  df-exp 13773  df-hash 14035  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-clim 15187  df-sum 15388
This theorem is referenced by:  sticksstones12  40103
  Copyright terms: Public domain W3C validator