Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones12a Structured version   Visualization version   GIF version

Theorem sticksstones12a 39782
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.)
Hypotheses
Ref Expression
sticksstones12a.1 (𝜑𝑁 ∈ ℕ0)
sticksstones12a.2 (𝜑𝐾 ∈ ℕ)
sticksstones12a.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones12a.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones12a.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones12a.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones12a (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑏,𝑘,𝑥,𝑦   𝐵,𝑎,𝑖,𝑘,𝑙   𝐵,𝑏,𝑖   𝐵,𝑗   𝐹,𝑏,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑓   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙   𝑁,𝑏,𝑔,𝑖,𝑘   𝑎,𝑑,𝑓,𝑗,𝑙,𝑥,𝑦   𝜑,𝑎,𝑖,𝑘,𝑙   𝑔,𝑏,𝑑   𝜑,𝑏   𝜑,𝑗   𝑔,𝑑,𝑖,𝑘   𝜑,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐴(𝑓,𝑔,𝑖,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑑)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑑,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑑,𝑙)   𝐾(𝑑)   𝑁(𝑥,𝑦,𝑑)

Proof of Theorem sticksstones12a
Dummy variables 𝑜 𝑠 𝑟 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones12a.4 . . . . . . 7 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
21a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))))
3 0red 10801 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4 sticksstones12a.2 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℕ)
54nngt0d 11844 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
63, 5ltned 10933 . . . . . . . . . . 11 (𝜑 → 0 ≠ 𝐾)
76necomd 2987 . . . . . . . . . 10 (𝜑𝐾 ≠ 0)
87neneqd 2937 . . . . . . . . 9 (𝜑 → ¬ 𝐾 = 0)
98ad2antrr 726 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → ¬ 𝐾 = 0)
109iffalsed 4436 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))
11 fveq1 6694 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏𝐾) = (𝑑𝐾))
1211oveq2d 7207 . . . . . . . . . . 11 (𝑏 = 𝑑 → ((𝑁 + 𝐾) − (𝑏𝐾)) = ((𝑁 + 𝐾) − (𝑑𝐾)))
13 fveq1 6694 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏‘1) = (𝑑‘1))
1413oveq1d 7206 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑏‘1) − 1) = ((𝑑‘1) − 1))
15 fveq1 6694 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
16 fveq1 6694 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏‘(𝑘 − 1)) = (𝑑‘(𝑘 − 1)))
1715, 16oveq12d 7209 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → ((𝑏𝑘) − (𝑏‘(𝑘 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
1817oveq1d 7206 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
1914, 18ifeq12d 4446 . . . . . . . . . . 11 (𝑏 = 𝑑 → if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
2012, 19ifeq12d 4446 . . . . . . . . . 10 (𝑏 = 𝑑 → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2120adantl 485 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2221adantr 484 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2322mpteq2dva 5135 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2410, 23eqtrd 2771 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
25 simpr 488 . . . . . 6 ((𝜑𝑑𝐵) → 𝑑𝐵)
26 fzfid 13511 . . . . . . 7 ((𝜑𝑑𝐵) → (1...(𝐾 + 1)) ∈ Fin)
2726mptexd 7018 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V)
282, 24, 25, 27fvmptd 6803 . . . . 5 ((𝜑𝑑𝐵) → (𝐺𝑑) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2928fveq2d 6699 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))))
30 sticksstones12a.3 . . . . . . 7 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
3130a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))))
32 simpll 767 . . . . . . . . . . 11 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
3332fveq1d 6697 . . . . . . . . . 10 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎𝑙) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3433sumeq2dv 15232 . . . . . . . . 9 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3534oveq2d 7207 . . . . . . . 8 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)))
3635mpteq2dva 5135 . . . . . . 7 (𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
3736adantl 485 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
38 eleq1 2818 . . . . . . . . . . 11 (((𝑁 + 𝐾) − (𝑑𝐾)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
39 eleq1 2818 . . . . . . . . . . 11 (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
40 sticksstones12a.6 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
4140eleq2i 2822 . . . . . . . . . . . . . . . . . . . 20 (𝑑𝐵𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
42 vex 3402 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
43 feq1 6504 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
44 fveq1 6694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑥) = (𝑑𝑥))
45 fveq1 6694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑦) = (𝑑𝑦))
4644, 45breq12d 5052 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑑 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑑𝑥) < (𝑑𝑦)))
4746imbi2d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑑 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
48472ralbidv 3110 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
4943, 48anbi12d 634 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑑 → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))))
5042, 49elab 3576 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5141, 50bitri 278 . . . . . . . . . . . . . . . . . . 19 (𝑑𝐵 ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5251biimpi 219 . . . . . . . . . . . . . . . . . 18 (𝑑𝐵 → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5352adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5453simpld 498 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
55 1zzd 12173 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
5655adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
574nnnn0d 12115 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ0)
5857nn0zd 12245 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℤ)
5958adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℤ)
604nnge1d 11843 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝐾)
6160adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ≤ 𝐾)
624nnred 11810 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℝ)
6362leidd 11363 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾𝐾)
6463adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾𝐾)
6556, 59, 59, 61, 64elfzd 13068 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝐾 ∈ (1...𝐾))
6654, 65ffvelrnd 6883 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ (1...(𝑁 + 𝐾)))
67 elfzle2 13081 . . . . . . . . . . . . . . 15 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6968adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
7069adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
71 elfznn 13106 . . . . . . . . . . . . . . . . 17 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ)
7271nnnn0d 12115 . . . . . . . . . . . . . . . 16 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ0)
7366, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ0)
7473adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ∈ ℕ0)
7574adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ∈ ℕ0)
76 sticksstones12a.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
7776ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝑁 ∈ ℕ0)
7857ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℕ0)
7977, 78nn0addcld 12119 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑁 + 𝐾) ∈ ℕ0)
80 nn0sub 12105 . . . . . . . . . . . . 13 (((𝑑𝐾) ∈ ℕ0 ∧ (𝑁 + 𝐾) ∈ ℕ0) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8175, 79, 80syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8270, 81mpbid 235 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0)
83 eleq1 2818 . . . . . . . . . . . 12 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
84 eleq1 2818 . . . . . . . . . . . 12 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
85 1le1 11425 . . . . . . . . . . . . . . . . . . . 20 1 ≤ 1
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → 1 ≤ 1)
8756, 59, 56, 86, 61elfzd 13068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → 1 ∈ (1...𝐾))
8854, 87ffvelrnd 6883 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
89 elfznn 13106 . . . . . . . . . . . . . . . . 17 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℕ)
9088, 89syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℕ)
91 nnm1nn0 12096 . . . . . . . . . . . . . . . 16 ((𝑑‘1) ∈ ℕ → ((𝑑‘1) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((𝑑‘1) − 1) ∈ ℕ0)
9392adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ ℕ0)
9493adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → ((𝑑‘1) − 1) ∈ ℕ0)
9594adantr 484 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℕ0)
9654ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
97 1zzd 12173 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
9859ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
99 elfznn 13106 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℕ)
10099nnzd 12246 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℤ)
101100ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
102 elfzle1 13080 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 1 ≤ 𝑘)
103102ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
104 neqne 2940 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = (𝐾 + 1) → 𝑘 ≠ (𝐾 + 1))
105104adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≠ (𝐾 + 1))
106105necomd 2987 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ≠ 𝑘)
10799ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℕ)
108107nnred 11810 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℝ)
10962ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℝ)
110 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ∈ ℝ)
111109, 110readdcld 10827 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℝ)
112 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
113112ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
114108, 111, 113leltned 10950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 < (𝐾 + 1) ↔ (𝐾 + 1) ≠ 𝑘))
115106, 114mpbird 260 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 < (𝐾 + 1))
116100ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℤ)
11759ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℤ)
118 zleltp1 12193 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝐾𝑘 < (𝐾 + 1)))
119116, 117, 118syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘𝐾𝑘 < (𝐾 + 1)))
120115, 119mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘𝐾)
121120adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
12297, 98, 101, 103, 121elfzd 13068 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...𝐾))
12396, 122ffvelrnd 6883 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
124 elfznn 13106 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℕ)
125124nnzd 12246 . . . . . . . . . . . . . . . . 17 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℤ)
126123, 125syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
127 1zzd 12173 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
12858ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
1291283impa 1112 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
130100adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ)
131130adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
1321313impa 1112 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
133132, 127zsubcld 12252 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
134 neqne 2940 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 = 1 → 𝑘 ≠ 1)
1351343ad2ant3 1137 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
136 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 ∈ ℝ)
1371363ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
138132zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
139 simp2 1139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...(𝐾 + 1)))
140139, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
141137, 138, 140leltned 10950 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘𝑘 ≠ 1))
142135, 141mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
143127, 132zltp1led 39671 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
144142, 143mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 + 1) ≤ 𝑘)
145 leaddsub 11273 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
146137, 137, 138, 145syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
147144, 146mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
148133zred 12247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
149623ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
150 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
151149, 150readdcld 10827 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐾 + 1) ∈ ℝ)
152151, 150resubcld 11225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ∈ ℝ)
1531123ad2ant2 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ (𝐾 + 1))
154138, 151, 150, 153lesub1dd 11413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ ((𝐾 + 1) − 1))
15562recnd 10826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐾 ∈ ℂ)
1561553ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℂ)
157 1cnd 10793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℂ)
158156, 157pncand 11155 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) = 𝐾)
159633ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾𝐾)
160158, 159eqbrtrd 5061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ≤ 𝐾)
161148, 152, 149, 154, 160letrd 10954 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
162127, 129, 133, 147, 161elfzd 13068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
163162ad5ant135 1370 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
16496, 163ffvelrnd 6883 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
165 elfznn 13106 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
167166nnzd 12246 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
168126, 167zsubcld 12252 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
169168, 97zsubcld 12252 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
170107adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℕ)
171170nnred 11810 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
172171ltm1d 11729 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) < 𝑘)
173163, 122jca 515 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)))
17453simprd 499 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
175174ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
176 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → (𝑥 < 𝑦 ↔ (𝑘 − 1) < 𝑦))
177 fveq2 6695 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑘 − 1) → (𝑑𝑥) = (𝑑‘(𝑘 − 1)))
178177breq1d 5049 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → ((𝑑𝑥) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑦)))
179176, 178imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 − 1) → ((𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦))))
180 breq2 5043 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑘 − 1) < 𝑦 ↔ (𝑘 − 1) < 𝑘))
181 fveq2 6695 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → (𝑑𝑦) = (𝑑𝑘))
182181breq2d 5051 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑑‘(𝑘 − 1)) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
183180, 182imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))))
184179, 183rspc2va 3538 . . . . . . . . . . . . . . . . . 18 ((((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
185173, 175, 184syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
186172, 185mpd 15 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))
187166nnred 11810 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℝ)
188126zred 12247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℝ)
189187, 188posdifd 11384 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑‘(𝑘 − 1)) < (𝑑𝑘) ↔ 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
190186, 189mpbid 235 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
191 0zd 12153 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ∈ ℤ)
192191, 168zltlem1d 39670 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ↔ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
193190, 192mpbid 235 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
194169, 193jca 515 . . . . . . . . . . . . 13 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
195 elnn0z 12154 . . . . . . . . . . . . 13 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
196194, 195sylibr 237 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0)
19783, 84, 95, 196ifbothda 4463 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0)
19838, 39, 82, 197ifbothda 4463 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0)
199 eqid 2736 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
200198, 199fmptd 6909 . . . . . . . . 9 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0)
201 eqidd 2737 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
202 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → 𝑘 = 𝑖)
203202eqeq1d 2738 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = (𝐾 + 1) ↔ 𝑖 = (𝐾 + 1)))
204202eqeq1d 2738 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = 1 ↔ 𝑖 = 1))
205202fveq2d 6699 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑𝑘) = (𝑑𝑖))
206202fvoveq1d 7213 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑖 − 1)))
207205, 206oveq12d 7209 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑖) − (𝑑‘(𝑖 − 1))))
208207oveq1d 7206 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))
209204, 208ifbieq2d 4451 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
210203, 209ifbieq2d 4451 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
211 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
212 ovexd 7226 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
213 ovexd 7226 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ V)
214 ovexd 7226 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) ∈ V)
215213, 214ifcld 4471 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) ∈ V)
216212, 215ifcld 4471 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) ∈ V)
217201, 210, 211, 216fvmptd 6803 . . . . . . . . . . 11 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
218217sumeq2dv 15232 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
219 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 = (𝐾 + 1) ↔ 𝑘 = (𝐾 + 1)))
220 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
221 fveq2 6695 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
222 fvoveq1 7214 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑‘(𝑖 − 1)) = (𝑑‘(𝑘 − 1)))
223221, 222oveq12d 7209 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑑𝑖) − (𝑑‘(𝑖 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
224223oveq1d 7206 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
225220, 224ifbieq2d 4451 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
226219, 225ifbieq2d 4451 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
227 nfcv 2897 . . . . . . . . . . . . 13 𝑘(1...(𝐾 + 1))
228 nfcv 2897 . . . . . . . . . . . . 13 𝑖(1...(𝐾 + 1))
229 nfcv 2897 . . . . . . . . . . . . 13 𝑘if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
230 nfcv 2897 . . . . . . . . . . . . 13 𝑖if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
231226, 227, 228, 229, 230cbvsum 15224 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
232231a1i 11 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
233 eqid 2736 . . . . . . . . . . . . . . . . . 18 1 = 1
234 1p0e1 11919 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
235233, 234eqtr4i 2762 . . . . . . . . . . . . . . . . 17 1 = (1 + 0)
236235a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (1 + 0))
237 0le1 11320 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
238237a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 1)
239136, 3, 62, 136, 60, 238le2addd 11416 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 0) ≤ (𝐾 + 1))
240236, 239eqbrtrd 5061 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (𝐾 + 1))
24158peano2zd 12250 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 + 1) ∈ ℤ)
242 eluz 12417 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
24355, 241, 242syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
244240, 243mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 + 1) ∈ (ℤ‘1))
245244adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (𝐾 + 1) ∈ (ℤ‘1))
246198nn0cnd 12117 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
247 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → (𝑘 = (𝐾 + 1) ↔ (𝐾 + 1) = (𝐾 + 1)))
248 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (𝑘 = 1 ↔ (𝐾 + 1) = 1))
249 fveq2 6695 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑𝑘) = (𝑑‘(𝐾 + 1)))
250 fvoveq1 7214 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑‘(𝑘 − 1)) = (𝑑‘((𝐾 + 1) − 1)))
251249, 250oveq12d 7209 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐾 + 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))))
252251oveq1d 7206 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))
253248, 252ifbieq2d 4451 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))
254247, 253ifbieq2d 4451 . . . . . . . . . . . . 13 (𝑘 = (𝐾 + 1) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))))
255245, 246, 254fsumm1 15278 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))))
256155adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℂ)
257 1cnd 10793 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℂ)
258256, 257pncand 11155 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝐾 + 1) − 1) = 𝐾)
259258oveq2d 7207 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (1...((𝐾 + 1) − 1)) = (1...𝐾))
260259sumeq1d 15230 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
261 eqidd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝐾 + 1) = (𝐾 + 1))
262261iftrued 4433 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
263260, 262oveq12d 7209 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))))
264 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℤ)
265264adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
266265zred 12247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℝ)
26762ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
268 1red 10799 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℝ)
269267, 268readdcld 10827 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
270 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘𝐾)
271270adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
272267ltp1d 11727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 < (𝐾 + 1))
273266, 267, 269, 271, 272lelttrd 10955 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 < (𝐾 + 1))
274266, 273ltned 10933 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ≠ (𝐾 + 1))
275274neneqd 2937 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → ¬ 𝑘 = (𝐾 + 1))
276275iffalsed 4436 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
277276sumeq2dv 15232 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
278 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
279 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
280 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → 𝑘 = 1)
281280iftrued 4433 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
282281eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
283282oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
284 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ¬ 𝑘 = 1)
285284iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
286285eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
287286oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
288278, 279, 283, 287ifbothda 4463 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
289288sumeq2dv 15232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
290 fzfid 13511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → (1...𝐾) ∈ Fin)
291 eleq1 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → ((𝑑‘1) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
292 eleq1 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
293543adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
294873adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
295293, 294ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
29689nnzd 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℤ)
297295, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
298297adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) ∈ ℤ)
299 simp3 1140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ (1...𝐾))
300293, 299ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
301300, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ ℤ)
302301adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
303293adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
304 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
305593adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
306305adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
3072653impa 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
308307adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
309308, 304zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
310 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ (1...𝐾) → 1 ≤ 𝑘)
311299, 310syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ≤ 𝑘)
312311adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
313134adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
314312, 313jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 ≤ 𝑘𝑘 ≠ 1))
315 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
316308zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
317315, 316ltlend 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 ≤ 𝑘𝑘 ≠ 1)))
318314, 317mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
319304, 308zltlem1d 39670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ 1 ≤ (𝑘 − 1)))
320318, 319mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
321309zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
322306zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
323316lem1d 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝑘)
324299, 270syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
325324adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
326321, 316, 322, 323, 325letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
327304, 306, 309, 320, 326elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
328303, 327ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
329328, 165syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
330329nnzd 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
331302, 330zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
332291, 292, 298, 331ifbothda 4463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
3333323expa 1120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
334333zcnd 12248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
335257adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℂ)
336290, 334, 335fsumsub 15315 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1))
337 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → 1 = 𝐾)
338337oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...1) = (1...𝐾))
339338eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...𝐾) = (1...1))
340339sumeq1d 15230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
341 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
342233a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵) → 1 = 1)
343342iftrued 4433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) = (𝑑‘1))
34490nncnd 11811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℂ)
345343, 344eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ)
346 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
347 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑𝑘) = (𝑑‘1))
348 fvoveq1 7214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑‘(𝑘 − 1)) = (𝑑‘(1 − 1)))
349347, 348oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘1) − (𝑑‘(1 − 1))))
350346, 349ifbieq2d 4451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
351350fsum1 15274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((1 ∈ ℤ ∧ if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
352341, 345, 351syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
353352, 343eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
354353adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
355 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 = 𝐾 → (𝑑‘1) = (𝑑𝐾))
356355adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (𝑑‘1) = (𝑑𝐾))
357340, 354, 3563eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
35843ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℕ)
359 nnuz 12442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ℕ = (ℤ‘1)
360359a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ℕ = (ℤ‘1))
361358, 360eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ (ℤ‘1))
3623343adantl3 1170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
363 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
364361, 362, 363fsum1p 15280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))))
365 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℝ)
366 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ((1 + 1)...𝐾) → (1 + 1) ≤ 𝑘)
367366adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 + 1) ≤ 𝑘)
368 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℤ)
369 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ((1 + 1)...𝐾) → 𝑘 ∈ ℤ)
370369adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ∈ ℤ)
371368, 370zltp1led 39671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
372367, 371mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 < 𝑘)
373365, 372ltned 10933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ≠ 𝑘)
374373necomd 2987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ≠ 1)
375374neneqd 2937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → ¬ 𝑘 = 1)
376375iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
377376sumeq2dv 15232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
378377oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
3792563adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℂ)
380 1cnd 10793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℂ)
381379, 380npcand 11158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾)
382381eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 = ((𝐾 − 1) + 1))
383382oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((1 + 1)...𝐾) = ((1 + 1)...((𝐾 − 1) + 1)))
384383sumeq1d 15230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
385384oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
386 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1)) → 𝑘 ∈ ℤ)
387386adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℤ)
388387zcnd 12248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℂ)
389 1cnd 10793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 1 ∈ ℂ)
390388, 389npcand 11158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑘 − 1) + 1) = 𝑘)
391390eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 = ((𝑘 − 1) + 1))
392391fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → (𝑑𝑘) = (𝑑‘((𝑘 − 1) + 1)))
393392oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
394393sumeq2dv 15232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
395394oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))))
396563adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℤ)
397593adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℤ)
398397, 396zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝐾 − 1) ∈ ℤ)
399543adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
400399adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
401 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℤ)
402397adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℤ)
403 elfznn 13106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ∈ ℕ)
404403adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℕ)
405404nnzd 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℤ)
406405peano2zd 12250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℤ)
407 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℝ)
408404nnred 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℝ)
409406zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℝ)
410404nnge1d 11843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ 𝑠)
411408lep1d 11728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝑠 + 1))
412407, 408, 409, 410, 411letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ (𝑠 + 1))
413 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ≤ (𝐾 − 1))
414413adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝐾 − 1))
415402zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
416 leaddsub 11273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
417408, 407, 415, 416syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
418414, 417mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ≤ 𝐾)
419401, 402, 406, 412, 418elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ (1...𝐾))
420400, 419ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)))
421 elfznn 13106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
422420, 421syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
423422nnzd 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℤ)
424415, 407resubcld 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
425415lem1d 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾)
426408, 424, 415, 414, 425letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠𝐾)
427401, 402, 405, 410, 426elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ (1...𝐾))
428400ffvelrnda 6882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) ∧ 𝑠 ∈ (1...𝐾)) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
429427, 428mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
430 elfznn 13106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑𝑠) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑠) ∈ ℕ)
431429, 430syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℕ)
432431nnzd 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℤ)
433423, 432zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℤ)
434433zcnd 12248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℂ)
435 fvoveq1 7214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑‘(𝑠 + 1)) = (𝑑‘((𝑘 − 1) + 1)))
436 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑𝑠) = (𝑑‘(𝑘 − 1)))
437435, 436oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 = (𝑘 − 1) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
438396, 396, 398, 434, 437fsumshft 15307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
439438eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))) = Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)))
440439oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))))
441 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 𝑠 → (𝑑𝑜) = (𝑑𝑠))
442 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = (𝑠 + 1) → (𝑑𝑜) = (𝑑‘(𝑠 + 1)))
443 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 1 → (𝑑𝑜) = (𝑑‘1))
444 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = ((𝐾 − 1) + 1) → (𝑑𝑜) = (𝑑‘((𝐾 − 1) + 1)))
445381, 361eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) ∈ (ℤ‘1))
44654adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
4474463impa 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
448447ffvelrnda 6882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...𝐾)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
449448ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
450381oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (1...((𝐾 − 1) + 1)) = (1...𝐾))
451450eleq2d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) ↔ 𝑜 ∈ (1...𝐾)))
452451imbi1d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))) ↔ (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))))
453449, 452mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
454453imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
455 elfznn 13106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑑𝑜) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑜) ∈ ℕ)
456454, 455syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℕ)
457456nncnd 11811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℂ)
458441, 442, 443, 444, 398, 445, 457telfsum2 15332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)))
459458oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))))
460381fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘((𝐾 − 1) + 1)) = (𝑑𝐾))
461460oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)) = ((𝑑𝐾) − (𝑑‘1)))
462461oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))))
4633443adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘1) ∈ ℂ)
46466, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ)
465464nncnd 11811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℂ)
4664653adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) ∈ ℂ)
467463, 466pncan3d 11157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
468 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) = (𝑑𝐾))
469467, 468eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
470462, 469eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = (𝑑𝐾))
471459, 470eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = (𝑑𝐾))
472440, 471eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
473395, 472eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
474385, 473eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
475378, 474eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = (𝑑𝐾))
476364, 475eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
4774763expa 1120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
478136adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 1 ∈ ℝ)
47962adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℝ)
480478, 479leloed 10940 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (1 ≤ 𝐾 ↔ (1 < 𝐾 ∨ 1 = 𝐾)))
48161, 480mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (1 < 𝐾 ∨ 1 = 𝐾))
482481orcomd 871 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → (1 = 𝐾 ∨ 1 < 𝐾))
483357, 477, 482mpjaodan 959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
484 fsumconst 15317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1...𝐾) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
485290, 257, 484syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
48657adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℕ0)
487 hashfz1 13877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
488486, 487syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (♯‘(1...𝐾)) = 𝐾)
489488oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = (𝐾 · 1))
490256mulid1d 10815 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (𝐾 · 1) = 𝐾)
491489, 490eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = 𝐾)
492485, 491eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = 𝐾)
493483, 492oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1) = ((𝑑𝐾) − 𝐾))
494336, 493eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = ((𝑑𝐾) − 𝐾))
495289, 494eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑑𝐾) − 𝐾))
496465, 256subcld 11154 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) ∈ ℂ)
497496addid1d 10997 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = ((𝑑𝐾) − 𝐾))
498497eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (((𝑑𝐾) − 𝐾) + 0))
499 0cnd 10791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → 0 ∈ ℂ)
500496, 499addcomd 10999 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = (0 + ((𝑑𝐾) − 𝐾)))
501498, 500eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (0 + ((𝑑𝐾) − 𝐾)))
502495, 501eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 + ((𝑑𝐾) − 𝐾)))
503499, 256, 465subsub2d 11183 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = (0 + ((𝑑𝐾) − 𝐾)))
504503eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → (0 + ((𝑑𝐾) − 𝐾)) = (0 − (𝐾 − (𝑑𝐾))))
505502, 504eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 − (𝐾 − (𝑑𝐾))))
50676nn0cnd 12117 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℂ)
507506adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → 𝑁 ∈ ℂ)
508507subidd 11142 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (𝑁𝑁) = 0)
509508eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → 0 = (𝑁𝑁))
510509oveq1d 7206 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
511505, 510eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
512256, 465subcld 11154 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (𝐾 − (𝑑𝐾)) ∈ ℂ)
513507, 507, 512subsub4d 11185 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → ((𝑁𝑁) − (𝐾 − (𝑑𝐾))) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
514511, 513eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
515507, 256, 465addsubassd 11174 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) = (𝑁 + (𝐾 − (𝑑𝐾))))
516515eqcomd 2742 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → (𝑁 + (𝐾 − (𝑑𝐾))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
517516oveq2d 7207 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
518514, 517eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
519277, 518eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
520 eleq1 2818 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
521 eleq1 2818 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
522 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ ℤ)
523297, 522zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
524523adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℤ)
525522adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
526331, 525zsubcld 12252 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
527520, 521, 524, 526ifbothda 4463 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
5285273expa 1120 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
529276eleq1d 2815 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
530528, 529mpbird 260 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
531290, 530fsumzcl 15264 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
532531zcnd 12248 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
533507, 256addcld 10817 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 + 𝐾) ∈ ℂ)
534533, 465subcld 11154 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℂ)
535532, 534, 507addlsub 11213 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁 ↔ Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾)))))
536519, 535mpbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
537 eqidd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → 𝑁 = 𝑁)
538536, 537eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
539263, 538eqtrd 2771 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = 𝑁)
540255, 539eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = 𝑁)
541232, 540eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = 𝑁)
542218, 541eqtrd 2771 . . . . . . . . 9 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)
543200, 542jca 515 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
544 ovex 7224 . . . . . . . . . . 11 (1...(𝐾 + 1)) ∈ V
545544mptex 7017 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V
546 feq1 6504 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0))
547 simpl 486 . . . . . . . . . . . . . 14 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
548547fveq1d 6697 . . . . . . . . . . . . 13 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
549548sumeq2dv 15232 . . . . . . . . . . . 12 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
550549eqeq1d 2738 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
551546, 550anbi12d 634 . . . . . . . . . 10 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
552545, 551elab 3576 . . . . . . . . 9 ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
553552a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
554543, 553mpbird 260 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
555 sticksstones12a.5 . . . . . . . . 9 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
556555a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
557556eqcomd 2742 . . . . . . 7 ((𝜑𝑑𝐵) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
558554, 557eleqtrd 2833 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ 𝐴)
559290mptexd 7018 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) ∈ V)
56031, 37, 558, 559fvmptd 6803 . . . . 5 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
561 eqidd 2737 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
562 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → 𝑘 = 𝑙)
563562eqeq1d 2738 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = (𝐾 + 1) ↔ 𝑙 = (𝐾 + 1)))
564562eqeq1d 2738 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = 1 ↔ 𝑙 = 1))
565562fveq2d 6699 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑𝑘) = (𝑑𝑙))
566562oveq1d 7206 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 − 1) = (𝑙 − 1))
567566fveq2d 6699 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑙 − 1)))
568565, 567oveq12d 7209 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
569568oveq1d 7206 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
570564, 569ifbieq2d 4451 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
571563, 570ifbieq2d 4451 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
572 1zzd 12173 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℤ)
573583ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
574573adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
575574peano2zd 12250 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℤ)
576 elfzelz 13077 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℤ)
577576adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
578 elfzle1 13080 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 1 ≤ 𝑙)
579578adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
580577zred 12247 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
581 simp3 1140 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
582 elfznn 13106 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
583581, 582syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
584583nnred 11810 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
585584adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
586575zred 12247 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
587 elfzle2 13081 . . . . . . . . . . . . . . 15 (𝑙 ∈ (1...𝑗) → 𝑙𝑗)
588587adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝑗)
589623ad2ant1 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
590 1red 10799 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
591589, 590readdcld 10827 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
592 elfzle2 13081 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗𝐾)
593581, 592syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗𝐾)
594589lep1d 11728 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ≤ (𝐾 + 1))
595584, 589, 591, 593, 594letrd 10954 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ≤ (𝐾 + 1))
596595adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ≤ (𝐾 + 1))
597580, 585, 586, 588, 596letrd 10954 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ (𝐾 + 1))
598572, 575, 577, 579, 597elfzd 13068 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...(𝐾 + 1)))
599 ovexd 7226 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
600 ovexd 7226 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ V)
601 ovexd 7226 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ V)
602600, 601ifcld 4471 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ V)
603599, 602ifcld 4471 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) ∈ V)
604561, 571, 598, 603fvmptd 6803 . . . . . . . . . . 11 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
605604sumeq2dv 15232 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
606605oveq2d 7207 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
607 elfznn 13106 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℕ)
608607adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℕ)
609608nnred 11810 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
610589adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℝ)
611 1red 10799 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℝ)
612610, 611readdcld 10827 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
613583adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℕ)
614613nnred 11810 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
615593adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗𝐾)
616609, 614, 610, 588, 615letrd 10954 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝐾)
617610ltp1d 11727 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 < (𝐾 + 1))
618609, 610, 612, 616, 617lelttrd 10955 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 < (𝐾 + 1))
619609, 618ltned 10933 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≠ (𝐾 + 1))
620619neneqd 2937 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ¬ 𝑙 = (𝐾 + 1))
621620iffalsed 4436 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
622621sumeq2dv 15232 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
623622oveq2d 7207 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
624583nnge1d 11843 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝑗)
625553ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
626583nnzd 12246 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℤ)
627 eluz 12417 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
628625, 626, 627syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
629624, 628mpbird 260 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (ℤ‘1))
630 eleq1 2818 . . . . . . . . . . . . . 14 (((𝑑‘1) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
631 eleq1 2818 . . . . . . . . . . . . . 14 ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
632543adant3 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
633 simp1 1138 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝜑)
634633, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝐾)
635633, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
636 eluz 12417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
637625, 635, 636syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
638634, 637mpbird 260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ (ℤ‘1))
639 eluzfz1 13084 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ (ℤ‘1) → 1 ∈ (1...𝐾))
640638, 639syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
641632, 640ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
642641, 89syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℕ)
643642nnzd 12246 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
644643, 625zsubcld 12252 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
645644zcnd 12248 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℂ)
646645adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ ℂ)
647646adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑙 = 1) → ((𝑑‘1) − 1) ∈ ℂ)
648632adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
649635adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
650608nnzd 12246 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
651608nnge1d 11843 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
652572, 649, 650, 651, 616elfzd 13068 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...𝐾))
653648, 652ffvelrnd 6883 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
654 elfzelz 13077 . . . . . . . . . . . . . . . . . . 19 ((𝑑𝑙) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑙) ∈ ℤ)
655653, 654syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ ℤ)
656655adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑𝑙) ∈ ℤ)
657648adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
658 1zzd 12173 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℤ)
659649adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℤ)
660650adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℤ)
661660, 658zsubcld 12252 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℤ)
662 neqne 2940 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 = 1 → 𝑙 ≠ 1)
663662adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ≠ 1)
664611adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℝ)
665609adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℝ)
666651adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ 𝑙)
667664, 665, 666leltned 10950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙𝑙 ≠ 1))
668663, 667mpbird 260 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 < 𝑙)
669658, 660zltlem1d 39670 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙 ↔ 1 ≤ (𝑙 − 1)))
670668, 669mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ (𝑙 − 1))
671661zred 12247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℝ)
672610adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℝ)
673665lem1d 11730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝑙)
674616adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙𝐾)
675671, 665, 672, 673, 674letrd 10954 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝐾)
676658, 659, 661, 670, 675elfzd 13068 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ (1...𝐾))
677657, 676ffvelrnd 6883 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
678 elfzelz 13077 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
679677, 678syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
680656, 679zsubcld 12252 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℤ)
681680, 658zsubcld 12252 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℤ)
682681zcnd 12248 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ)
683630, 631, 647, 682ifbothda 4463 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ)
684 iftrue 4431 . . . . . . . . . . . . 13 (𝑙 = 1 → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = ((𝑑‘1) − 1))
685629, 683, 684fsum1p 15280 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
686685oveq2d 7207 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
687633, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
688687adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℝ)
689688, 688readdcld 10827 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ∈ ℝ)
690 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙 ∈ ℤ)
691690adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℤ)
692691zred 12247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℝ)
693688ltp1d 11727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < (1 + 1))
694 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ((1 + 1)...𝑗) → (1 + 1) ≤ 𝑙)
695694adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ≤ 𝑙)
696688, 689, 692, 693, 695ltletrd 10957 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < 𝑙)
697688, 696ltned 10933 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≠ 𝑙)
698697necomd 2987 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ≠ 1)
699698neneqd 2937 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ¬ 𝑙 = 1)
700699iffalsed 4436 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
701700sumeq2dv 15232 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
702701oveq2d 7207 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
703702oveq2d 7207 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
704 fzfid 13511 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...𝑗) ∈ Fin)
705632adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
706 1zzd 12173 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℤ)
707635adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℤ)
708688, 689, 693ltled 10945 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (1 + 1))
709688, 689, 692, 708, 695letrd 10954 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ 𝑙)
710584adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗 ∈ ℝ)
711589adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℝ)
712 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙𝑗)
713712adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝑗)
714593adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗𝐾)
715692, 710, 711, 713, 714letrd 10954 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝐾)
716706, 707, 691, 709, 715elfzd 13068 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ (1...𝐾))
717705, 716ffvelrnd 6883 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
718717, 654syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℤ)
719718zcnd 12248 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℂ)
720691, 706zsubcld 12252 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℤ)
721 leaddsub 11273 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
722688, 688, 692, 721syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
723695, 722mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (𝑙 − 1))
724692, 688resubcld 11225 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℝ)
725692lem1d 11730 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝑙)
726724, 692, 711, 725, 715letrd 10954 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝐾)
727706, 707, 720, 723, 726elfzd 13068 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ (1...𝐾))
728705, 727ffvelrnd 6883 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
729678zcnd 12248 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
730728, 729syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
731719, 730subcld 11154 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
732 1cnd 10793 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℂ)
733704, 731, 732fsumsub 15315 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))
734733oveq2d 7207 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)))
735734oveq2d 7207 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))))
736 1cnd 10793 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℂ)
737 fsumconst 15317 . . . . . . . . . . . . . . . . . . 19 ((((1 + 1)...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
738704, 736, 737syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
739 hashfzp1 13963 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ‘1) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
740629, 739syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
741740oveq1d 7206 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = ((𝑗 − 1) · 1))
742583nncnd 11811 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℂ)
743742, 736subcld 11154 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℂ)
744743mulid1d 10815 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) · 1) = (𝑗 − 1))
745741, 744eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = (𝑗 − 1))
746738, 745eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = (𝑗 − 1))
747746oveq2d 7207 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))
748747oveq2d 7207 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
749748oveq2d 7207 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))))
750704, 731fsumcl 15262 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
751645, 750, 743addsubassd 11174 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
752751eqcomd 2742 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))) = ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)))
753752oveq2d 7207 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
754645, 750addcld 10817 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) ∈ ℂ)
755742, 754, 743addsubassd 11174 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
756755eqcomd 2742 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)))
757742, 754, 743addsubd 11175 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))))
758742, 736nncand 11159 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − (𝑗 − 1)) = 1)
759 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
760626, 625zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℤ)
761632adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
762 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℤ)
763635adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℤ)
764 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℤ)
765764adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ)
766765peano2zd 12250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℤ)
767 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℝ)
768765zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ)
769768, 767readdcld 10827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℝ)
770 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 1 ≤ 𝑙)
771770adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ 𝑙)
772768lep1d 11728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑙 + 1))
773767, 768, 769, 771, 772letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ (𝑙 + 1))
774584adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ)
775774, 767resubcld 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ)
776589adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℝ)
777776, 767resubcld 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝐾 − 1) ∈ ℝ)
778 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ≤ (𝑗 − 1))
779778adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑗 − 1))
780593adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗𝐾)
781774, 776, 767, 780lesub1dd 11413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ (𝐾 − 1))
782768, 775, 777, 779, 781letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝐾 − 1))
783 leaddsub 11273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
784768, 767, 776, 783syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
785782, 784mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝐾)
786762, 763, 766, 773, 785elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ (1...𝐾))
787761, 786ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)))
788 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
789787, 788syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
790584, 687resubcld 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℝ)
791584lem1d 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝑗)
792790, 584, 589, 791, 593letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝐾)
793792adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ 𝐾)
794768, 775, 776, 779, 793letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙𝐾)
795762, 763, 765, 771, 794elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (1...𝐾))
796761, 795ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
797796, 654syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ ℤ)
798789, 797zsubcld 12252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℤ)
799798zcnd 12248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℂ)
800 fvoveq1 7214 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑‘(𝑙 + 1)) = (𝑑‘((𝑤 − 1) + 1)))
801 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑𝑙) = (𝑑‘(𝑤 − 1)))
802800, 801oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑤 − 1) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
803759, 759, 760, 799, 802fsumshft 15307 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
804 oveq1 7198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑙 → (𝑤 − 1) = (𝑙 − 1))
805804fvoveq1d 7213 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘((𝑤 − 1) + 1)) = (𝑑‘((𝑙 − 1) + 1)))
806804fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘(𝑤 − 1)) = (𝑑‘(𝑙 − 1)))
807805, 806oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑙 → ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
808 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙((1 + 1)...((𝑗 − 1) + 1))
809 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤((1 + 1)...((𝑗 − 1) + 1))
810 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1)))
811 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
812807, 808, 809, 810, 811cbvsum 15224 . . . . . . . . . . . . . . . . . . . . . . . 24 Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
813812a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
814803, 813eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
815742, 736npcand 11158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) = 𝑗)
816815oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...((𝑗 − 1) + 1)) = ((1 + 1)...𝑗))
817816sumeq1d 15230 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
818692recnd 10826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℂ)
819818, 732npcand 11158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑙 − 1) + 1) = 𝑙)
820819fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘((𝑙 − 1) + 1)) = (𝑑𝑙))
821820oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
822821sumeq2dv 15232 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
823817, 822eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
824814, 823eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
825824eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))
826825oveq2d 7207 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))))
827758, 826oveq12d 7209 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))))
828 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑙 → (𝑑𝑟) = (𝑑𝑙))
829 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝑙 + 1) → (𝑑𝑟) = (𝑑‘(𝑙 + 1)))
830 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 1 → (𝑑𝑟) = (𝑑‘1))
831 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = ((𝑗 − 1) + 1) → (𝑑𝑟) = (𝑑‘((𝑗 − 1) + 1)))
832815, 629eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ∈ (ℤ‘1))
833632adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
834 1zzd 12173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℤ)
835635adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℤ)
836 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ∈ ℤ)
837836adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℤ)
838 elfzle1 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 1 ≤ 𝑟)
839838adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ≤ 𝑟)
840837zred 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℝ)
841584adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑗 ∈ ℝ)
842 1red 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℝ)
843841, 842resubcld 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑗 − 1) ∈ ℝ)
844843, 842readdcld 10827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ∈ ℝ)
845589adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℝ)
846 elfzle2 13081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ≤ ((𝑗 − 1) + 1))
847846adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ≤ ((𝑗 − 1) + 1))
848815, 593eqbrtrd 5061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ≤ 𝐾)
849848adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ≤ 𝐾)
850840, 844, 845, 847, 849letrd 10954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟𝐾)
851834, 835, 837, 839, 850elfzd 13068 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ (1...𝐾))
852833, 851ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ (1...(𝑁 + 𝐾)))
853 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝑟) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑟) ∈ ℤ)
854852, 853syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℤ)
855854zcnd 12248 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℂ)
856828, 829, 830, 831, 760, 832, 855telfsum2 15332 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))
857856oveq2d 7207 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))) = (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
858857oveq2d 7207 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
859815fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) = (𝑑𝑗))
860632, 581ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ (1...(𝑁 + 𝐾)))
861 elfzelz 13077 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑗) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑗) ∈ ℤ)
862860, 861syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ ℤ)
863859, 862eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℤ)
864863zcnd 12248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℂ)
865642nnred 11810 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℝ)
866865recnd 10826 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℂ)
867864, 866subcld 11154 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)) ∈ ℂ)
868736, 645, 867addassd 10820 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
869868eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
870736, 866pncan3d 11157 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + ((𝑑‘1) − 1)) = (𝑑‘1))
871870oveq1d 7206 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
872866, 864pncan3d 11157 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑‘((𝑗 − 1) + 1)))
873872, 859eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
874871, 873eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
875869, 874eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = (𝑑𝑗))
876858, 875eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (𝑑𝑗))
877827, 876eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (𝑑𝑗))
878757, 877eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑑𝑗))
879756, 878eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = (𝑑𝑗))
880753, 879eqtrd 2771 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑑𝑗))
881749, 880eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑑𝑗))
882735, 881eqtrd 2771 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
883703, 882eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
884686, 883eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
885623, 884eqtrd 2771 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
886606, 885eqtrd 2771 . . . . . . . 8 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
8878863expa 1120 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
888887mpteq2dva 5135 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)))
889 nfcv 2897 . . . . . . . 8 𝑞(𝑑𝑗)
890 nfcv 2897 . . . . . . . 8 𝑗(𝑑𝑞)
891 fveq2 6695 . . . . . . . 8 (𝑗 = 𝑞 → (𝑑𝑗) = (𝑑𝑞))
892889, 890, 891cbvmpt 5141 . . . . . . 7 (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞))
893892a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
894888, 893eqtrd 2771 . . . . 5 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
895560, 894eqtrd 2771 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89629, 895eqtrd 2771 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89754ffnd 6524 . . . . 5 ((𝜑𝑑𝐵) → 𝑑 Fn (1...𝐾))
898 dffn5 6749 . . . . . 6 (𝑑 Fn (1...𝐾) ↔ 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
899898biimpi 219 . . . . 5 (𝑑 Fn (1...𝐾) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
900897, 899syl 17 . . . 4 ((𝜑𝑑𝐵) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
901900eqcomd 2742 . . 3 ((𝜑𝑑𝐵) → (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)) = 𝑑)
902896, 901eqtrd 2771 . 2 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
903902ralrimiva 3095 1 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  {cab 2714  wne 2932  wral 3051  Vcvv 3398  ifcif 4425  {csn 4527  cop 4533   class class class wbr 5039  cmpt 5120   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  Fincfn 8604  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  cn 11795  0cn0 12055  cz 12141  cuz 12403  ...cfz 13060  chash 13861  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by:  sticksstones12  39783
  Copyright terms: Public domain W3C validator