Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones12a Structured version   Visualization version   GIF version

Theorem sticksstones12a 42114
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.)
Hypotheses
Ref Expression
sticksstones12a.1 (𝜑𝑁 ∈ ℕ0)
sticksstones12a.2 (𝜑𝐾 ∈ ℕ)
sticksstones12a.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones12a.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones12a.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones12a.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones12a (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑏,𝑘,𝑥,𝑦   𝐵,𝑎,𝑖,𝑘,𝑙   𝐵,𝑏,𝑖   𝐵,𝑗   𝐹,𝑏,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑓   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙   𝑁,𝑏,𝑔,𝑖,𝑘   𝑎,𝑑,𝑓,𝑗,𝑙,𝑥,𝑦   𝜑,𝑎,𝑖,𝑘,𝑙   𝑔,𝑏,𝑑   𝜑,𝑏   𝜑,𝑗   𝑔,𝑑,𝑖,𝑘   𝜑,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐴(𝑓,𝑔,𝑖,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑑)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑑,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑑,𝑙)   𝐾(𝑑)   𝑁(𝑥,𝑦,𝑑)

Proof of Theorem sticksstones12a
Dummy variables 𝑜 𝑠 𝑟 𝑤 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones12a.4 . . . . . . 7 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
21a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))))
3 0red 11293 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4 sticksstones12a.2 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℕ)
54nngt0d 12342 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
63, 5ltned 11426 . . . . . . . . . . 11 (𝜑 → 0 ≠ 𝐾)
76necomd 3002 . . . . . . . . . 10 (𝜑𝐾 ≠ 0)
87neneqd 2951 . . . . . . . . 9 (𝜑 → ¬ 𝐾 = 0)
98ad2antrr 725 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → ¬ 𝐾 = 0)
109iffalsed 4559 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))
11 fveq1 6919 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏𝐾) = (𝑑𝐾))
1211oveq2d 7464 . . . . . . . . . . 11 (𝑏 = 𝑑 → ((𝑁 + 𝐾) − (𝑏𝐾)) = ((𝑁 + 𝐾) − (𝑑𝐾)))
13 fveq1 6919 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏‘1) = (𝑑‘1))
1413oveq1d 7463 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑏‘1) − 1) = ((𝑑‘1) − 1))
15 fveq1 6919 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
16 fveq1 6919 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏‘(𝑘 − 1)) = (𝑑‘(𝑘 − 1)))
1715, 16oveq12d 7466 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → ((𝑏𝑘) − (𝑏‘(𝑘 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
1817oveq1d 7463 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
1914, 18ifeq12d 4569 . . . . . . . . . . 11 (𝑏 = 𝑑 → if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
2012, 19ifeq12d 4569 . . . . . . . . . 10 (𝑏 = 𝑑 → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2120adantl 481 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2221adantr 480 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
2322mpteq2dva 5266 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2410, 23eqtrd 2780 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑏 = 𝑑) → if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
25 simpr 484 . . . . . 6 ((𝜑𝑑𝐵) → 𝑑𝐵)
26 fzfid 14024 . . . . . . 7 ((𝜑𝑑𝐵) → (1...(𝐾 + 1)) ∈ Fin)
2726mptexd 7261 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V)
282, 24, 25, 27fvmptd 7036 . . . . 5 ((𝜑𝑑𝐵) → (𝐺𝑑) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
2928fveq2d 6924 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))))
30 sticksstones12a.3 . . . . . . 7 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
3130a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)))))
32 simpll 766 . . . . . . . . . . 11 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
3332fveq1d 6922 . . . . . . . . . 10 (((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎𝑙) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3433sumeq2dv 15750 . . . . . . . . 9 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎𝑙) = Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))
3534oveq2d 7464 . . . . . . . 8 ((𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)))
3635mpteq2dva 5266 . . . . . . 7 (𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
3736adantl 481 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑎 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
38 eleq1 2832 . . . . . . . . . . 11 (((𝑁 + 𝐾) − (𝑑𝐾)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
39 eleq1 2832 . . . . . . . . . . 11 (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) → (if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0 ↔ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0))
40 sticksstones12a.6 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
4140eleq2i 2836 . . . . . . . . . . . . . . . . . . . 20 (𝑑𝐵𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
42 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
43 feq1 6728 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
44 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑥) = (𝑑𝑥))
45 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = 𝑑 → (𝑓𝑦) = (𝑑𝑦))
4644, 45breq12d 5179 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑑 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑑𝑥) < (𝑑𝑦)))
4746imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑑 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
48472ralbidv 3227 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
4943, 48anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑑 → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))))
5042, 49elab 3694 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5141, 50bitri 275 . . . . . . . . . . . . . . . . . . 19 (𝑑𝐵 ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5251biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑑𝐵 → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5352adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
5453simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
55 1zzd 12674 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
574nnnn0d 12613 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ0)
5857nn0zd 12665 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℤ)
5958adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℤ)
604nnge1d 12341 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝐾)
6160adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ≤ 𝐾)
624nnred 12308 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℝ)
6362leidd 11856 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾𝐾)
6463adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾𝐾)
6556, 59, 59, 61, 64elfzd 13575 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝐾 ∈ (1...𝐾))
6654, 65ffvelcdmd 7119 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ (1...(𝑁 + 𝐾)))
67 elfzle2 13588 . . . . . . . . . . . . . . 15 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
6968adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
7069adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ≤ (𝑁 + 𝐾))
71 elfznn 13613 . . . . . . . . . . . . . . . . 17 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ)
7271nnnn0d 12613 . . . . . . . . . . . . . . . 16 ((𝑑𝐾) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝐾) ∈ ℕ0)
7366, 72syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ0)
7473adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑑𝐾) ∈ ℕ0)
7574adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑑𝐾) ∈ ℕ0)
76 sticksstones12a.1 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
7776ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝑁 ∈ ℕ0)
7857ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℕ0)
7977, 78nn0addcld 12617 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑁 + 𝐾) ∈ ℕ0)
80 nn0sub 12603 . . . . . . . . . . . . 13 (((𝑑𝐾) ∈ ℕ0 ∧ (𝑁 + 𝐾) ∈ ℕ0) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8175, 79, 80syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑑𝐾) ≤ (𝑁 + 𝐾) ↔ ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0))
8270, 81mpbid 232 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℕ0)
83 eleq1 2832 . . . . . . . . . . . 12 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
84 eleq1 2832 . . . . . . . . . . . 12 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0))
85 1le1 11918 . . . . . . . . . . . . . . . . . . . 20 1 ≤ 1
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → 1 ≤ 1)
8756, 59, 56, 86, 61elfzd 13575 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → 1 ∈ (1...𝐾))
8854, 87ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
89 elfznn 13613 . . . . . . . . . . . . . . . . 17 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℕ)
9088, 89syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℕ)
91 nnm1nn0 12594 . . . . . . . . . . . . . . . 16 ((𝑑‘1) ∈ ℕ → ((𝑑‘1) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((𝑑‘1) − 1) ∈ ℕ0)
9392adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ ℕ0)
9493adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → ((𝑑‘1) − 1) ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℕ0)
9654ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
97 1zzd 12674 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
9859ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
99 elfznn 13613 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℕ)
10099nnzd 12666 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℤ)
101100ad3antlr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
102 elfzle1 13587 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 + 1)) → 1 ≤ 𝑘)
103102ad3antlr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
104 neqne 2954 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = (𝐾 + 1) → 𝑘 ≠ (𝐾 + 1))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≠ (𝐾 + 1))
106105necomd 3002 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ≠ 𝑘)
10799ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℕ)
108107nnred 12308 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℝ)
10962ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℝ)
110 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ∈ ℝ)
111109, 110readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℝ)
112 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
113112ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1))
114108, 111, 113leltned 11443 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 < (𝐾 + 1) ↔ (𝐾 + 1) ≠ 𝑘))
115106, 114mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 < (𝐾 + 1))
116100ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℤ)
11759ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℤ)
118 zleltp1 12694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝐾𝑘 < (𝐾 + 1)))
119116, 117, 118syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘𝐾𝑘 < (𝐾 + 1)))
120115, 119mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘𝐾)
121120adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
12297, 98, 101, 103, 121elfzd 13575 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...𝐾))
12396, 122ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
124 elfznn 13613 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℕ)
125124nnzd 12666 . . . . . . . . . . . . . . . . 17 ((𝑑𝑘) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑘) ∈ ℤ)
126123, 125syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
127 1zzd 12674 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
12858ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
1291283impa 1110 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
130100adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ)
131130adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
1321313impa 1110 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
133132, 127zsubcld 12752 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
134 neqne 2954 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 = 1 → 𝑘 ≠ 1)
1351343ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
136 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 ∈ ℝ)
1371363ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
138132zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
139 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...(𝐾 + 1)))
140139, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
141137, 138, 140leltned 11443 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘𝑘 ≠ 1))
142135, 141mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
143127, 132zltp1led 41936 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
144142, 143mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 + 1) ≤ 𝑘)
145 leaddsub 11766 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
146137, 137, 138, 145syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1)))
147144, 146mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
148133zred 12747 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
149623ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
150 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
151149, 150readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐾 + 1) ∈ ℝ)
152151, 150resubcld 11718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ∈ ℝ)
1531123ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ (𝐾 + 1))
154138, 151, 150, 153lesub1dd 11906 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ ((𝐾 + 1) − 1))
15562recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐾 ∈ ℂ)
1561553ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℂ)
157 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℂ)
158156, 157pncand 11648 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) = 𝐾)
159633ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾𝐾)
160158, 159eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ≤ 𝐾)
161148, 152, 149, 154, 160letrd 11447 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
162127, 129, 133, 147, 161elfzd 13575 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
163162ad5ant135 1368 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
16496, 163ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
165 elfznn 13613 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
166164, 165syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
167166nnzd 12666 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
168126, 167zsubcld 12752 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
169168, 97zsubcld 12752 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
170107adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℕ)
171170nnred 12308 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
172171ltm1d 12227 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) < 𝑘)
173163, 122jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)))
17453simprd 495 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
175174ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))
176 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → (𝑥 < 𝑦 ↔ (𝑘 − 1) < 𝑦))
177 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑘 − 1) → (𝑑𝑥) = (𝑑‘(𝑘 − 1)))
178177breq1d 5176 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑘 − 1) → ((𝑑𝑥) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑦)))
179176, 178imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 − 1) → ((𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦))))
180 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑘 − 1) < 𝑦 ↔ (𝑘 − 1) < 𝑘))
181 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → (𝑑𝑦) = (𝑑𝑘))
182181breq2d 5178 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → ((𝑑‘(𝑘 − 1)) < (𝑑𝑦) ↔ (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
183180, 182imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (((𝑘 − 1) < 𝑦 → (𝑑‘(𝑘 − 1)) < (𝑑𝑦)) ↔ ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))))
184179, 183rspc2va 3647 . . . . . . . . . . . . . . . . . 18 ((((𝑘 − 1) ∈ (1...𝐾) ∧ 𝑘 ∈ (1...𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
185173, 175, 184syl2anc 583 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) < 𝑘 → (𝑑‘(𝑘 − 1)) < (𝑑𝑘)))
186172, 185mpd 15 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) < (𝑑𝑘))
187166nnred 12308 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℝ)
188126zred 12747 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℝ)
189187, 188posdifd 11877 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑑‘(𝑘 − 1)) < (𝑑𝑘) ↔ 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
190186, 189mpbid 232 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
191 0zd 12651 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ∈ ℤ)
192191, 168zltlem1d 41935 . . . . . . . . . . . . . . 15 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (0 < ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ↔ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
193190, 192mpbid 232 . . . . . . . . . . . . . 14 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
194169, 193jca 511 . . . . . . . . . . . . 13 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
195 elnn0z 12652 . . . . . . . . . . . . 13 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0 ↔ ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ∧ 0 ≤ (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
196194, 195sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℕ0)
19783, 84, 95, 196ifbothda 4586 . . . . . . . . . . 11 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℕ0)
19838, 39, 82, 197ifbothda 4586 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℕ0)
199 eqid 2740 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
200198, 199fmptd 7148 . . . . . . . . 9 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0)
201 eqidd 2741 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
202 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → 𝑘 = 𝑖)
203202eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = (𝐾 + 1) ↔ 𝑖 = (𝐾 + 1)))
204202eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑘 = 1 ↔ 𝑖 = 1))
205202fveq2d 6924 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑𝑘) = (𝑑𝑖))
206202fvoveq1d 7470 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑖 − 1)))
207205, 206oveq12d 7466 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑖) − (𝑑‘(𝑖 − 1))))
208207oveq1d 7463 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))
209204, 208ifbieq2d 4574 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
210203, 209ifbieq2d 4574 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = 𝑖) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
211 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
212 ovexd 7483 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
213 ovexd 7483 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑑‘1) − 1) ∈ V)
214 ovexd 7483 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) ∈ V)
215213, 214ifcld 4594 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) ∈ V)
216212, 215ifcld 4594 . . . . . . . . . . . 12 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) ∈ V)
217201, 210, 211, 216fvmptd 7036 . . . . . . . . . . 11 (((𝜑𝑑𝐵) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
218217sumeq2dv 15750 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))))
219 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 = (𝐾 + 1) ↔ 𝑘 = (𝐾 + 1)))
220 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
221 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
222 fvoveq1 7471 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑑‘(𝑖 − 1)) = (𝑑‘(𝑘 − 1)))
223221, 222oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑑𝑖) − (𝑑‘(𝑖 − 1))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
224223oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1) = (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))
225220, 224ifbieq2d 4574 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
226219, 225ifbieq2d 4574 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
227 nfcv 2908 . . . . . . . . . . . . 13 𝑘if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1)))
228 nfcv 2908 . . . . . . . . . . . . 13 𝑖if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
229226, 227, 228cbvsum 15743 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
230229a1i 11 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
231 eqid 2740 . . . . . . . . . . . . . . . . . 18 1 = 1
232 1p0e1 12417 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
233231, 232eqtr4i 2771 . . . . . . . . . . . . . . . . 17 1 = (1 + 0)
234233a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (1 + 0))
235 0le1 11813 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
236235a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 1)
237136, 3, 62, 136, 60, 236le2addd 11909 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 0) ≤ (𝐾 + 1))
238234, 237eqbrtrd 5188 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (𝐾 + 1))
23958peano2zd 12750 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 + 1) ∈ ℤ)
240 eluz 12917 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
24155, 239, 240syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (𝐾 + 1)))
242238, 241mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 + 1) ∈ (ℤ‘1))
243242adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (𝐾 + 1) ∈ (ℤ‘1))
244198nn0cnd 12615 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
245 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → (𝑘 = (𝐾 + 1) ↔ (𝐾 + 1) = (𝐾 + 1)))
246 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (𝑘 = 1 ↔ (𝐾 + 1) = 1))
247 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑𝑘) = (𝑑‘(𝐾 + 1)))
248 fvoveq1 7471 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝐾 + 1) → (𝑑‘(𝑘 − 1)) = (𝑑‘((𝐾 + 1) − 1)))
249247, 248oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐾 + 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))))
250249oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑘 = (𝐾 + 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))
251246, 250ifbieq2d 4574 . . . . . . . . . . . . . 14 (𝑘 = (𝐾 + 1) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))
252245, 251ifbieq2d 4574 . . . . . . . . . . . . 13 (𝑘 = (𝐾 + 1) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))))
253243, 244, 252fsumm1 15799 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))))
254155adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 𝐾 ∈ ℂ)
255 1cnd 11285 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → 1 ∈ ℂ)
256254, 255pncand 11648 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝐾 + 1) − 1) = 𝐾)
257256oveq2d 7464 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (1...((𝐾 + 1) − 1)) = (1...𝐾))
258257sumeq1d 15748 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))
259 eqidd 2741 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → (𝐾 + 1) = (𝐾 + 1))
260259iftrued 4556 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
261258, 260oveq12d 7466 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))))
262 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℤ)
263262adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
264263zred 12747 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℝ)
26562ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
266 1red 11291 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℝ)
267265, 266readdcld 11319 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
268 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐾) → 𝑘𝐾)
269268adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
270265ltp1d 12225 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝐾 < (𝐾 + 1))
271264, 265, 267, 269, 270lelttrd 11448 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 < (𝐾 + 1))
272264, 271ltned 11426 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 𝑘 ≠ (𝐾 + 1))
273272neneqd 2951 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → ¬ 𝑘 = (𝐾 + 1))
274273iffalsed 4559 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
275274sumeq2dv 15750 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))
276 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
277 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1)))
278 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → 𝑘 = 1)
279278iftrued 4556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
280279eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
281280oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
282 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ¬ 𝑘 = 1)
283282iffalsed 4559 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
284283eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
285284oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
286276, 277, 281, 285ifbothda 4586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
287286sumeq2dv 15750 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1))
288 fzfid 14024 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → (1...𝐾) ∈ Fin)
289 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘1) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → ((𝑑‘1) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
290 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ ↔ if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ))
291543adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
292873adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
293291, 292ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
29489nnzd 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑‘1) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘1) ∈ ℤ)
295293, 294syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
296295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → (𝑑‘1) ∈ ℤ)
297 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ (1...𝐾))
298291, 297ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ (1...(𝑁 + 𝐾)))
299298, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → (𝑑𝑘) ∈ ℤ)
300299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑𝑘) ∈ ℤ)
301291adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
302 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
303593adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
304303adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ)
3052633impa 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘 ∈ ℤ)
306305adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ)
307306, 302zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ)
308 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ (1...𝐾) → 1 ≤ 𝑘)
309297, 308syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ≤ 𝑘)
310309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘)
311134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
312310, 311jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 ≤ 𝑘𝑘 ≠ 1))
313 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℝ)
314306zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ)
315313, 314ltlend 11435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 ≤ 𝑘𝑘 ≠ 1)))
316312, 315mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘)
317302, 306zltlem1d 41935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ 1 ≤ (𝑘 − 1)))
318316, 317mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1))
319307zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
320304zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ)
321314lem1d 12228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝑘)
322297, 268syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 𝑘𝐾)
323322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 𝑘𝐾)
324319, 314, 320, 321, 323letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾)
325302, 304, 307, 318, 324elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾))
326301, 325ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ (1...(𝑁 + 𝐾)))
327326, 165syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℕ)
328327nnzd 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (𝑑‘(𝑘 − 1)) ∈ ℤ)
329300, 328zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) ∈ ℤ)
330289, 290, 296, 329ifbothda 4586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
3313303expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℤ)
332331zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
333255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → 1 ∈ ℂ)
334288, 332, 333fsumsub 15836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1))
335 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → 1 = 𝐾)
336335oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...1) = (1...𝐾))
337336eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (1...𝐾) = (1...1))
338337sumeq1d 15748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
339 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → 1 ∈ ℤ)
340231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵) → 1 = 1)
341340iftrued 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) = (𝑑‘1))
34290nncnd 12309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵) → (𝑑‘1) ∈ ℂ)
343341, 342eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵) → if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ)
344 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
345 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑𝑘) = (𝑑‘1))
346 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 1 → (𝑑‘(𝑘 − 1)) = (𝑑‘(1 − 1)))
347345, 346oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 1 → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘1) − (𝑑‘(1 − 1))))
348344, 347ifbieq2d 4574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
349348fsum1 15795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((1 ∈ ℤ ∧ if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))) ∈ ℂ) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
350339, 343, 349syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = if(1 = 1, (𝑑‘1), ((𝑑‘1) − (𝑑‘(1 − 1)))))
351350, 341eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
352351adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...1)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
353 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 = 𝐾 → (𝑑‘1) = (𝑑𝐾))
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → (𝑑‘1) = (𝑑𝐾))
355338, 352, 3543eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 = 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
35643ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℕ)
357 nnuz 12946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ℕ = (ℤ‘1)
358357a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ℕ = (ℤ‘1))
359356, 358eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ (ℤ‘1))
3603323adantl3 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) ∈ ℂ)
361 iftrue 4554 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 1 → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑‘1))
362359, 360, 361fsum1p 15801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))))
363 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℝ)
364 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ((1 + 1)...𝐾) → (1 + 1) ≤ 𝑘)
365364adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 + 1) ≤ 𝑘)
366 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ∈ ℤ)
367 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ ((1 + 1)...𝐾) → 𝑘 ∈ ℤ)
368367adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ∈ ℤ)
369366, 368zltp1led 41936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
370365, 369mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 < 𝑘)
371363, 370ltned 11426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 1 ≠ 𝑘)
372371necomd 3002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → 𝑘 ≠ 1)
373372neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → ¬ 𝑘 = 1)
374373iffalsed 4559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...𝐾)) → if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
375374sumeq2dv 15750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
376375oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
3772543adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℂ)
378 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℂ)
379377, 378npcand 11651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) = 𝐾)
380379eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 = ((𝐾 − 1) + 1))
381380oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((1 + 1)...𝐾) = ((1 + 1)...((𝐾 − 1) + 1)))
382381sumeq1d 15748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))))
383382oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))))
384 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1)) → 𝑘 ∈ ℤ)
385384adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℤ)
386385zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 ∈ ℂ)
387 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 1 ∈ ℂ)
388386, 387npcand 11651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑘 − 1) + 1) = 𝑘)
389388eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → 𝑘 = ((𝑘 − 1) + 1))
390389fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → (𝑑𝑘) = (𝑑‘((𝑘 − 1) + 1)))
391390oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
392391sumeq2dv 15750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
393392oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))))
394563adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 1 ∈ ℤ)
395593adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝐾 ∈ ℤ)
396395, 394zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝐾 − 1) ∈ ℤ)
397543adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
398397adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
399 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℤ)
400395adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℤ)
401 elfznn 13613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ∈ ℕ)
402401adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℕ)
403402nnzd 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℤ)
404403peano2zd 12750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℤ)
405 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ∈ ℝ)
406402nnred 12308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ ℝ)
407404zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ ℝ)
408402nnge1d 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ 𝑠)
409406lep1d 12226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝑠 + 1))
410405, 406, 407, 408, 409letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 1 ≤ (𝑠 + 1))
411 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑠 ∈ (1...(𝐾 − 1)) → 𝑠 ≤ (𝐾 − 1))
412411adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ≤ (𝐾 − 1))
413400zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
414 leaddsub 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
415406, 405, 413, 414syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑠 + 1) ≤ 𝐾𝑠 ≤ (𝐾 − 1)))
416412, 415mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ≤ 𝐾)
417399, 400, 404, 410, 416elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑠 + 1) ∈ (1...𝐾))
418398, 417ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)))
419 elfznn 13613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑‘(𝑠 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
420418, 419syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℕ)
421420nnzd 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑‘(𝑠 + 1)) ∈ ℤ)
422413, 405resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
423413lem1d 12228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ≤ 𝐾)
424406, 422, 413, 412, 423letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠𝐾)
425399, 400, 403, 408, 424elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → 𝑠 ∈ (1...𝐾))
426398ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) ∧ 𝑠 ∈ (1...𝐾)) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
427425, 426mpdan 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ (1...(𝑁 + 𝐾)))
428 elfznn 13613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑𝑠) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑠) ∈ ℕ)
429427, 428syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℕ)
430429nnzd 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → (𝑑𝑠) ∈ ℤ)
431421, 430zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℤ)
432431zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑠 ∈ (1...(𝐾 − 1))) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) ∈ ℂ)
433 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑‘(𝑠 + 1)) = (𝑑‘((𝑘 − 1) + 1)))
434 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = (𝑘 − 1) → (𝑑𝑠) = (𝑑‘(𝑘 − 1)))
435433, 434oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 = (𝑘 − 1) → ((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
436394, 394, 396, 432, 435fsumshft 15828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))))
437436eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1))) = Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)))
438437oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))))
439 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 𝑠 → (𝑑𝑜) = (𝑑𝑠))
440 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = (𝑠 + 1) → (𝑑𝑜) = (𝑑‘(𝑠 + 1)))
441 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = 1 → (𝑑𝑜) = (𝑑‘1))
442 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑜 = ((𝐾 − 1) + 1) → (𝑑𝑜) = (𝑑‘((𝐾 − 1) + 1)))
443379, 359eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝐾 − 1) + 1) ∈ (ℤ‘1))
44454adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
4454443impa 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
446445ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...𝐾)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
447446ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
448379oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (1...((𝐾 − 1) + 1)) = (1...𝐾))
449448eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) ↔ 𝑜 ∈ (1...𝐾)))
450449imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))) ↔ (𝑜 ∈ (1...𝐾) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))))
451447, 450mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑜 ∈ (1...((𝐾 − 1) + 1)) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾))))
452451imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ (1...(𝑁 + 𝐾)))
453 elfznn 13613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑑𝑜) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑜) ∈ ℕ)
454452, 453syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℕ)
455454nncnd 12309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑𝐵 ∧ 1 < 𝐾) ∧ 𝑜 ∈ (1...((𝐾 − 1) + 1))) → (𝑑𝑜) ∈ ℂ)
456439, 440, 441, 442, 396, 443, 455telfsum2 15853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠)) = ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)))
457456oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))))
458379fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘((𝐾 − 1) + 1)) = (𝑑𝐾))
459458oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1)) = ((𝑑𝐾) − (𝑑‘1)))
460459oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))))
4613423adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑‘1) ∈ ℂ)
46266, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℕ)
463462nncnd 12309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑑𝐵) → (𝑑𝐾) ∈ ℂ)
4644633adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) ∈ ℂ)
465461, 464pncan3d 11650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
466 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → (𝑑𝐾) = (𝑑𝐾))
467465, 466eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑𝐾) − (𝑑‘1))) = (𝑑𝐾))
468460, 467eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + ((𝑑‘((𝐾 − 1) + 1)) − (𝑑‘1))) = (𝑑𝐾))
469457, 468eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑠 ∈ (1...(𝐾 − 1))((𝑑‘(𝑠 + 1)) − (𝑑𝑠))) = (𝑑𝐾))
470438, 469eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑‘((𝑘 − 1) + 1)) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
471393, 470eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...((𝐾 − 1) + 1))((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
472383, 471eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
473376, 472eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → ((𝑑‘1) + Σ𝑘 ∈ ((1 + 1)...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1))))) = (𝑑𝐾))
474362, 473eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵 ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
4754743expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵) ∧ 1 < 𝐾) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
476136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 1 ∈ ℝ)
47762adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℝ)
478476, 477leloed 11433 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (1 ≤ 𝐾 ↔ (1 < 𝐾 ∨ 1 = 𝐾)))
47961, 478mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (1 < 𝐾 ∨ 1 = 𝐾))
480479orcomd 870 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → (1 = 𝐾 ∨ 1 < 𝐾))
481355, 475, 480mpjaodan 959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) = (𝑑𝐾))
482 fsumconst 15838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1...𝐾) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
483288, 255, 482syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = ((♯‘(1...𝐾)) · 1))
48457adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵) → 𝐾 ∈ ℕ0)
485 hashfz1 14395 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
486484, 485syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑𝐵) → (♯‘(1...𝐾)) = 𝐾)
487486oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = (𝐾 · 1))
488254mulridd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵) → (𝐾 · 1) = 𝐾)
489487, 488eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵) → ((♯‘(1...𝐾)) · 1) = 𝐾)
490483, 489eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)1 = 𝐾)
491481, 490oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − Σ𝑘 ∈ (1...𝐾)1) = ((𝑑𝐾) − 𝐾))
492334, 491eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)(if(𝑘 = 1, (𝑑‘1), ((𝑑𝑘) − (𝑑‘(𝑘 − 1)))) − 1) = ((𝑑𝐾) − 𝐾))
493287, 492eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑑𝐾) − 𝐾))
494463, 254subcld 11647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) ∈ ℂ)
495494addridd 11490 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = ((𝑑𝐾) − 𝐾))
496495eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (((𝑑𝐾) − 𝐾) + 0))
497 0cnd 11283 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵) → 0 ∈ ℂ)
498494, 497addcomd 11492 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → (((𝑑𝐾) − 𝐾) + 0) = (0 + ((𝑑𝐾) − 𝐾)))
499496, 498eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → ((𝑑𝐾) − 𝐾) = (0 + ((𝑑𝐾) − 𝐾)))
500493, 499eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 + ((𝑑𝐾) − 𝐾)))
501497, 254, 463subsub2d 11676 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = (0 + ((𝑑𝐾) − 𝐾)))
502501eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → (0 + ((𝑑𝐾) − 𝐾)) = (0 − (𝐾 − (𝑑𝐾))))
503500, 502eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (0 − (𝐾 − (𝑑𝐾))))
50476nn0cnd 12615 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℂ)
505504adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵) → 𝑁 ∈ ℂ)
506505subidd 11635 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → (𝑁𝑁) = 0)
507506eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → 0 = (𝑁𝑁))
508507oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (0 − (𝐾 − (𝑑𝐾))) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
509503, 508eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = ((𝑁𝑁) − (𝐾 − (𝑑𝐾))))
510254, 463subcld 11647 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (𝐾 − (𝑑𝐾)) ∈ ℂ)
511505, 505, 510subsub4d 11678 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → ((𝑁𝑁) − (𝐾 − (𝑑𝐾))) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
512509, 511eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))))
513505, 254, 463addsubassd 11667 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) = (𝑁 + (𝐾 − (𝑑𝐾))))
514513eqcomd 2746 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → (𝑁 + (𝐾 − (𝑑𝐾))) = ((𝑁 + 𝐾) − (𝑑𝐾)))
515514oveq2d 7464 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 − (𝑁 + (𝐾 − (𝑑𝐾)))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
516512, 515eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
517275, 516eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾))))
518 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑‘1) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
519 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) → ((((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
520 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → 1 ∈ ℤ)
521295, 520zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
522521adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ 𝑘 = 1) → ((𝑑‘1) − 1) ∈ ℤ)
523520adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
524329, 523zsubcld 12752 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) ∧ ¬ 𝑘 = 1) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) ∈ ℤ)
525518, 519, 522, 524ifbothda 4586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
5265253expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ)
527274eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → (if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ ↔ if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) ∈ ℤ))
528526, 527mpbird 257 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵) ∧ 𝑘 ∈ (1...𝐾)) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
529288, 528fsumzcl 15783 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℤ)
530529zcnd 12748 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) ∈ ℂ)
531505, 254addcld 11309 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑁 + 𝐾) ∈ ℂ)
532531, 463subcld 11647 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ ℂ)
533530, 532, 505addlsub 11706 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → ((Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁 ↔ Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = (𝑁 − ((𝑁 + 𝐾) − (𝑑𝐾)))))
534517, 533mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
535 eqidd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → 𝑁 = 𝑁)
536534, 535eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...𝐾)if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + ((𝑁 + 𝐾) − (𝑑𝐾))) = 𝑁)
537261, 536eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → (Σ𝑘 ∈ (1...((𝐾 + 1) − 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) + if((𝐾 + 1) = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if((𝐾 + 1) = 1, ((𝑑‘1) − 1), (((𝑑‘(𝐾 + 1)) − (𝑑‘((𝐾 + 1) − 1))) − 1)))) = 𝑁)
538253, 537eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → Σ𝑘 ∈ (1...(𝐾 + 1))if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = 𝑁)
539230, 538eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))if(𝑖 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑖 = 1, ((𝑑‘1) − 1), (((𝑑𝑖) − (𝑑‘(𝑖 − 1))) − 1))) = 𝑁)
540218, 539eqtrd 2780 . . . . . . . . 9 ((𝜑𝑑𝐵) → Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)
541200, 540jca 511 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
542 ovex 7481 . . . . . . . . . . 11 (1...(𝐾 + 1)) ∈ V
543542mptex 7260 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ V
544 feq1 6728 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0))
545 simpl 482 . . . . . . . . . . . . . 14 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
546545fveq1d 6922 . . . . . . . . . . . . 13 ((𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
547546sumeq2dv 15750 . . . . . . . . . . . 12 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖))
548547eqeq1d 2742 . . . . . . . . . . 11 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
549544, 548anbi12d 631 . . . . . . . . . 10 (𝑔 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
550543, 549elab 3694 . . . . . . . . 9 ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁))
551550a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))):(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑖) = 𝑁)))
552541, 551mpbird 257 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
553 sticksstones12a.5 . . . . . . . . 9 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
554553a1i 11 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
555554eqcomd 2746 . . . . . . 7 ((𝜑𝑑𝐵) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = 𝐴)
556552, 555eleqtrd 2846 . . . . . 6 ((𝜑𝑑𝐵) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) ∈ 𝐴)
557288mptexd 7261 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) ∈ V)
55831, 37, 556, 557fvmptd 7036 . . . . 5 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))))
559 eqidd 2741 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)))))
560 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → 𝑘 = 𝑙)
561560eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = (𝐾 + 1) ↔ 𝑙 = (𝐾 + 1)))
562560eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 = 1 ↔ 𝑙 = 1))
563560fveq2d 6924 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑𝑘) = (𝑑𝑙))
564560oveq1d 7463 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑘 − 1) = (𝑙 − 1))
565564fveq2d 6924 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (𝑑‘(𝑘 − 1)) = (𝑑‘(𝑙 − 1)))
566563, 565oveq12d 7466 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → ((𝑑𝑘) − (𝑑‘(𝑘 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
567566oveq1d 7463 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
568562, 567ifbieq2d 4574 . . . . . . . . . . . . 13 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1)) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
569561, 568ifbieq2d 4574 . . . . . . . . . . . 12 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑘 = 𝑙) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
570 1zzd 12674 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℤ)
571583ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
572571adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
573572peano2zd 12750 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℤ)
574 elfzelz 13584 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℤ)
575574adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
576 elfzle1 13587 . . . . . . . . . . . . . 14 (𝑙 ∈ (1...𝑗) → 1 ≤ 𝑙)
577576adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
578575zred 12747 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
579 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (1...𝐾))
580 elfznn 13613 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗 ∈ ℕ)
581579, 580syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℕ)
582581nnred 12308 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℝ)
583582adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
584573zred 12747 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
585 elfzle2 13588 . . . . . . . . . . . . . . 15 (𝑙 ∈ (1...𝑗) → 𝑙𝑗)
586585adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝑗)
587623ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℝ)
588 1red 11291 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
589587, 588readdcld 11319 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ)
590 elfzle2 13588 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝐾) → 𝑗𝐾)
591579, 590syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗𝐾)
592587lep1d 12226 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ≤ (𝐾 + 1))
593582, 587, 589, 591, 592letrd 11447 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ≤ (𝐾 + 1))
594593adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ≤ (𝐾 + 1))
595578, 583, 584, 586, 594letrd 11447 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ (𝐾 + 1))
596570, 573, 575, 577, 595elfzd 13575 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...(𝐾 + 1)))
597 ovexd 7483 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑁 + 𝐾) − (𝑑𝐾)) ∈ V)
598 ovexd 7483 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ V)
599 ovexd 7483 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ V)
600598, 599ifcld 4594 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ V)
601597, 600ifcld 4594 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) ∈ V)
602559, 569, 596, 601fvmptd 7036 . . . . . . . . . . 11 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
603602sumeq2dv 15750 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
604603oveq2d 7464 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
605 elfznn 13613 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℕ)
606605adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℕ)
607606nnred 12308 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ)
608587adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℝ)
609 1red 11291 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ∈ ℝ)
610608, 609readdcld 11319 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝐾 + 1) ∈ ℝ)
611581adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℕ)
612611nnred 12308 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ)
613591adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗𝐾)
614607, 612, 608, 586, 613letrd 11447 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙𝐾)
615608ltp1d 12225 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 < (𝐾 + 1))
616607, 608, 610, 614, 615lelttrd 11448 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 < (𝐾 + 1))
617607, 616ltned 11426 . . . . . . . . . . . . . 14 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≠ (𝐾 + 1))
618617neneqd 2951 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ¬ 𝑙 = (𝐾 + 1))
619618iffalsed 4559 . . . . . . . . . . . 12 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
620619sumeq2dv 15750 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
621620oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
622581nnge1d 12341 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝑗)
623553ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
624581nnzd 12666 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℤ)
625 eluz 12917 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
626623, 624, 625syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 ∈ (ℤ‘1) ↔ 1 ≤ 𝑗))
627622, 626mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ (ℤ‘1))
628 eleq1 2832 . . . . . . . . . . . . . 14 (((𝑑‘1) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → (((𝑑‘1) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
629 eleq1 2832 . . . . . . . . . . . . . 14 ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) → ((((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ ↔ if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ))
630543adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
631 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝜑)
632631, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ≤ 𝐾)
633631, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ ℤ)
634 eluz 12917 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
635623, 633, 634syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝐾 ∈ (ℤ‘1) ↔ 1 ≤ 𝐾))
636632, 635mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝐾 ∈ (ℤ‘1))
637 eluzfz1 13591 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ (ℤ‘1) → 1 ∈ (1...𝐾))
638636, 637syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ (1...𝐾))
639630, 638ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ (1...(𝑁 + 𝐾)))
640639, 89syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℕ)
641640nnzd 12666 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℤ)
642641, 623zsubcld 12752 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℤ)
643642zcnd 12748 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) − 1) ∈ ℂ)
644643adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → ((𝑑‘1) − 1) ∈ ℂ)
645644adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ 𝑙 = 1) → ((𝑑‘1) − 1) ∈ ℂ)
646630adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
647633adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝐾 ∈ ℤ)
648606nnzd 12666 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ)
649606nnge1d 12341 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 1 ≤ 𝑙)
650570, 647, 648, 649, 614elfzd 13575 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (1...𝐾))
651646, 650ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
652 elfzelz 13584 . . . . . . . . . . . . . . . . . . 19 ((𝑑𝑙) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑙) ∈ ℤ)
653651, 652syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑑𝑙) ∈ ℤ)
654653adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑𝑙) ∈ ℤ)
655646adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
656 1zzd 12674 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℤ)
657647adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℤ)
658648adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℤ)
659658, 656zsubcld 12752 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℤ)
660 neqne 2954 . . . . . . . . . . . . . . . . . . . . . . 23 𝑙 = 1 → 𝑙 ≠ 1)
661660adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ≠ 1)
662609adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ∈ ℝ)
663607adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙 ∈ ℝ)
664649adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ 𝑙)
665662, 663, 664leltned 11443 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙𝑙 ≠ 1))
666661, 665mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 < 𝑙)
667656, 658zltlem1d 41935 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (1 < 𝑙 ↔ 1 ≤ (𝑙 − 1)))
668666, 667mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 1 ≤ (𝑙 − 1))
669659zred 12747 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ ℝ)
670608adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝐾 ∈ ℝ)
671663lem1d 12228 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝑙)
672614adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → 𝑙𝐾)
673669, 663, 670, 671, 672letrd 11447 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ≤ 𝐾)
674656, 657, 659, 668, 673elfzd 13575 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑙 − 1) ∈ (1...𝐾))
675655, 674ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
676 elfzelz 13584 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
677675, 676syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (𝑑‘(𝑙 − 1)) ∈ ℤ)
678654, 677zsubcld 12752 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℤ)
679678, 656zsubcld 12752 . . . . . . . . . . . . . . 15 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℤ)
680679zcnd 12748 . . . . . . . . . . . . . 14 ((((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) ∧ ¬ 𝑙 = 1) → (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) ∈ ℂ)
681628, 629, 645, 680ifbothda 4586 . . . . . . . . . . . . 13 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) ∈ ℂ)
682 iftrue 4554 . . . . . . . . . . . . 13 (𝑙 = 1 → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = ((𝑑‘1) − 1))
683627, 681, 682fsum1p 15801 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
684683oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))))
685631, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℝ)
686685adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℝ)
687686, 686readdcld 11319 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ∈ ℝ)
688 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙 ∈ ℤ)
689688adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℤ)
690689zred 12747 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℝ)
691686ltp1d 12225 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < (1 + 1))
692 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ((1 + 1)...𝑗) → (1 + 1) ≤ 𝑙)
693692adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (1 + 1) ≤ 𝑙)
694686, 687, 690, 691, 693ltletrd 11450 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 < 𝑙)
695686, 694ltned 11426 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≠ 𝑙)
696695necomd 3002 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ≠ 1)
697696neneqd 2951 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ¬ 𝑙 = 1)
698697iffalsed 4559 . . . . . . . . . . . . . . 15 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
699698sumeq2dv 15750 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))
700699oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))
701700oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))))
702 fzfid 14024 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...𝑗) ∈ Fin)
703630adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
704 1zzd 12674 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℤ)
705633adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℤ)
706686, 687, 691ltled 11438 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (1 + 1))
707686, 687, 690, 706, 693letrd 11447 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ 𝑙)
708582adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗 ∈ ℝ)
709587adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝐾 ∈ ℝ)
710 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ((1 + 1)...𝑗) → 𝑙𝑗)
711710adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝑗)
712591adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑗𝐾)
713690, 708, 709, 711, 712letrd 11447 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙𝐾)
714704, 705, 689, 707, 713elfzd 13575 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ (1...𝐾))
715703, 714ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
716715, 652syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℤ)
717716zcnd 12748 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑𝑙) ∈ ℂ)
718689, 704zsubcld 12752 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℤ)
719 leaddsub 11766 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
720686, 686, 690, 719syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((1 + 1) ≤ 𝑙 ↔ 1 ≤ (𝑙 − 1)))
721693, 720mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ≤ (𝑙 − 1))
722690, 686resubcld 11718 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ ℝ)
723690lem1d 12228 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝑙)
724722, 690, 709, 723, 713letrd 11447 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ≤ 𝐾)
725704, 705, 718, 721, 724elfzd 13575 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑙 − 1) ∈ (1...𝐾))
726703, 725ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)))
727676zcnd 12748 . . . . . . . . . . . . . . . . . 18 ((𝑑‘(𝑙 − 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
728726, 727syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘(𝑙 − 1)) ∈ ℂ)
729717, 728subcld 11647 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
730 1cnd 11285 . . . . . . . . . . . . . . . 16 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 1 ∈ ℂ)
731702, 729, 730fsumsub 15836 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))
732731oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)))
733732oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))))
734 1cnd 11285 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℂ)
735 fsumconst 15838 . . . . . . . . . . . . . . . . . . 19 ((((1 + 1)...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
736702, 734, 735syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = ((♯‘((1 + 1)...𝑗)) · 1))
737 hashfzp1 14480 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ‘1) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
738627, 737syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (♯‘((1 + 1)...𝑗)) = (𝑗 − 1))
739738oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = ((𝑗 − 1) · 1))
740581nncnd 12309 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 𝑗 ∈ ℂ)
741740, 734subcld 11647 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℂ)
742741mulridd 11307 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) · 1) = (𝑗 − 1))
743739, 742eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((♯‘((1 + 1)...𝑗)) · 1) = (𝑗 − 1))
744736, 743eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)1 = (𝑗 − 1))
745744oveq2d 7464 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1) = (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))
746745oveq2d 7464 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
747746oveq2d 7464 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))))
748702, 729fsumcl 15781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) ∈ ℂ)
749643, 748, 741addsubassd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)) = (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))))
750749eqcomd 2746 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1))) = ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1)))
751750oveq2d 7464 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
752643, 748addcld 11309 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) ∈ ℂ)
753740, 752, 741addsubassd 11667 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))))
754753eqcomd 2746 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)))
755740, 752, 741addsubd 11668 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))))
756740, 734nncand 11652 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − (𝑗 − 1)) = 1)
757 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → 1 ∈ ℤ)
758624, 623zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℤ)
759630adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
760 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℤ)
761633adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℤ)
762 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℤ)
763762adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ)
764763peano2zd 12750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℤ)
765 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈ ℝ)
766763zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ)
767766, 765readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℝ)
768 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑙 ∈ (1...(𝑗 − 1)) → 1 ≤ 𝑙)
769768adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ 𝑙)
770766lep1d 12226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑙 + 1))
771765, 766, 767, 769, 770letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ≤ (𝑙 + 1))
772582adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ)
773772, 765resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ)
774587adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝐾 ∈ ℝ)
775774, 765resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝐾 − 1) ∈ ℝ)
776 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ≤ (𝑗 − 1))
777776adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑗 − 1))
778591adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗𝐾)
779772, 774, 765, 778lesub1dd 11906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ (𝐾 − 1))
780766, 773, 775, 777, 779letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝐾 − 1))
781 leaddsub 11766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
782766, 765, 774, 781syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) ≤ 𝐾𝑙 ≤ (𝐾 − 1)))
783780, 782mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝐾)
784760, 761, 764, 771, 783elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ (1...𝐾))
785759, 784ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)))
786 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑‘(𝑙 + 1)) ∈ (1...(𝑁 + 𝐾)) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
787785, 786syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑‘(𝑙 + 1)) ∈ ℤ)
788582, 685resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ∈ ℝ)
789582lem1d 12228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝑗)
790788, 582, 587, 789, 591letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 − 1) ≤ 𝐾)
791790adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ≤ 𝐾)
792766, 773, 774, 777, 791letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙𝐾)
793760, 761, 763, 769, 792elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (1...𝐾))
794759, 793ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ (1...(𝑁 + 𝐾)))
795794, 652syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑑𝑙) ∈ ℤ)
796787, 795zsubcld 12752 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℤ)
797796zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) ∈ ℂ)
798 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑‘(𝑙 + 1)) = (𝑑‘((𝑤 − 1) + 1)))
799 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑤 − 1) → (𝑑𝑙) = (𝑑‘(𝑤 − 1)))
800798, 799oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑤 − 1) → ((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
801757, 757, 758, 797, 800fsumshft 15828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))))
802 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑙 → (𝑤 − 1) = (𝑙 − 1))
803802fvoveq1d 7470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘((𝑤 − 1) + 1)) = (𝑑‘((𝑙 − 1) + 1)))
804802fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑙 → (𝑑‘(𝑤 − 1)) = (𝑑‘(𝑙 − 1)))
805803, 804oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑙 → ((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
806 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑙((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1)))
807 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
808805, 806, 807cbvsum 15743 . . . . . . . . . . . . . . . . . . . . . . . 24 Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1)))
809808a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑤 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑤 − 1) + 1)) − (𝑑‘(𝑤 − 1))) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
810801, 809eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
811740, 734npcand 11651 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) = 𝑗)
812811oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + 1)...((𝑗 − 1) + 1)) = ((1 + 1)...𝑗))
813812sumeq1d 15748 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))))
814690recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → 𝑙 ∈ ℂ)
815814, 730npcand 11651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑙 − 1) + 1) = 𝑙)
816815fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → (𝑑‘((𝑙 − 1) + 1)) = (𝑑𝑙))
817816oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ ((1 + 1)...𝑗)) → ((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = ((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
818817sumeq2dv 15750 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
819813, 818eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...((𝑗 − 1) + 1))((𝑑‘((𝑙 − 1) + 1)) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
820810, 819eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))
821820eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) = Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))
822821oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) = (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))))
823756, 822oveq12d 7466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))))
824 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑙 → (𝑑𝑟) = (𝑑𝑙))
825 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝑙 + 1) → (𝑑𝑟) = (𝑑‘(𝑙 + 1)))
826 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 1 → (𝑑𝑟) = (𝑑‘1))
827 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = ((𝑗 − 1) + 1) → (𝑑𝑟) = (𝑑‘((𝑗 − 1) + 1)))
828811, 627eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ∈ (ℤ‘1))
829630adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
830 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℤ)
831633adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℤ)
832 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ∈ ℤ)
833832adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℤ)
834 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 1 ≤ 𝑟)
835834adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ≤ 𝑟)
836833zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ ℝ)
837582adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑗 ∈ ℝ)
838 1red 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 1 ∈ ℝ)
839837, 838resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑗 − 1) ∈ ℝ)
840839, 838readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ∈ ℝ)
841587adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝐾 ∈ ℝ)
842 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑟 ∈ (1...((𝑗 − 1) + 1)) → 𝑟 ≤ ((𝑗 − 1) + 1))
843842adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ≤ ((𝑗 − 1) + 1))
844811, 591eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − 1) + 1) ≤ 𝐾)
845844adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → ((𝑗 − 1) + 1) ≤ 𝐾)
846836, 840, 841, 843, 845letrd 11447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟𝐾)
847830, 831, 833, 835, 846elfzd 13575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → 𝑟 ∈ (1...𝐾))
848829, 847ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ (1...(𝑁 + 𝐾)))
849 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝑟) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑟) ∈ ℤ)
850848, 849syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℤ)
851850zcnd 12748 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) ∧ 𝑟 ∈ (1...((𝑗 − 1) + 1))) → (𝑑𝑟) ∈ ℂ)
852824, 825, 826, 827, 758, 828, 851telfsum2 15853 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)) = ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))
853852oveq2d 7464 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙))) = (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
854853oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
855811fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) = (𝑑𝑗))
856630, 579ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ (1...(𝑁 + 𝐾)))
857 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑗) ∈ (1...(𝑁 + 𝐾)) → (𝑑𝑗) ∈ ℤ)
858856, 857syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑𝑗) ∈ ℤ)
859855, 858eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℤ)
860859zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘((𝑗 − 1) + 1)) ∈ ℂ)
861640nnred 12308 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℝ)
862861recnd 11318 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑑‘1) ∈ ℂ)
863860, 862subcld 11647 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)) ∈ ℂ)
864734, 643, 863addassd 11312 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))))
865864eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
866734, 862pncan3d 11650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + ((𝑑‘1) − 1)) = (𝑑‘1))
867866oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))))
868862, 860pncan3d 11650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑‘((𝑗 − 1) + 1)))
869868, 855eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑑‘1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
870867, 869eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((1 + ((𝑑‘1) − 1)) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1))) = (𝑑𝑗))
871865, 870eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + ((𝑑‘((𝑗 − 1) + 1)) − (𝑑‘1)))) = (𝑑𝑗))
872854, 871eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (1 + (((𝑑‘1) − 1) + Σ𝑙 ∈ (1...(𝑗 − 1))((𝑑‘(𝑙 + 1)) − (𝑑𝑙)))) = (𝑑𝑗))
873823, 872eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 − (𝑗 − 1)) + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) = (𝑑𝑗))
874755, 873eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → ((𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))))) − (𝑗 − 1)) = (𝑑𝑗))
875754, 874eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + ((((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1)))) − (𝑗 − 1))) = (𝑑𝑗))
876751, 875eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − (𝑗 − 1)))) = (𝑑𝑗))
877747, 876eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + (Σ𝑙 ∈ ((1 + 1)...𝑗)((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − Σ𝑙 ∈ ((1 + 1)...𝑗)1))) = (𝑑𝑗))
878733, 877eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)(((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
879701, 878eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + (((𝑑‘1) − 1) + Σ𝑙 ∈ ((1 + 1)...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
880684, 879eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1))) = (𝑑𝑗))
881621, 880eqtrd 2780 . . . . . . . . 9 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)if(𝑙 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑙 = 1, ((𝑑‘1) − 1), (((𝑑𝑙) − (𝑑‘(𝑙 − 1))) − 1)))) = (𝑑𝑗))
882604, 881eqtrd 2780 . . . . . . . 8 ((𝜑𝑑𝐵𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
8838823expa 1118 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙)) = (𝑑𝑗))
884883mpteq2dva 5266 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)))
885 nfcv 2908 . . . . . . . 8 𝑞(𝑑𝑗)
886 nfcv 2908 . . . . . . . 8 𝑗(𝑑𝑞)
887 fveq2 6920 . . . . . . . 8 (𝑗 = 𝑞 → (𝑑𝑗) = (𝑑𝑞))
888885, 886, 887cbvmpt 5277 . . . . . . 7 (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞))
889888a1i 11 . . . . . 6 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑑𝑗)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
890884, 889eqtrd 2780 . . . . 5 ((𝜑𝑑𝐵) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)((𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))‘𝑙))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
891558, 890eqtrd 2780 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑑𝐾)), if(𝑘 = 1, ((𝑑‘1) − 1), (((𝑑𝑘) − (𝑑‘(𝑘 − 1))) − 1))))) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89229, 891eqtrd 2780 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
89354ffnd 6748 . . . . 5 ((𝜑𝑑𝐵) → 𝑑 Fn (1...𝐾))
894 dffn5 6980 . . . . . 6 (𝑑 Fn (1...𝐾) ↔ 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
895894biimpi 216 . . . . 5 (𝑑 Fn (1...𝐾) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
896893, 895syl 17 . . . 4 ((𝜑𝑑𝐵) → 𝑑 = (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)))
897896eqcomd 2746 . . 3 ((𝜑𝑑𝐵) → (𝑞 ∈ (1...𝐾) ↦ (𝑑𝑞)) = 𝑑)
898892, 897eqtrd 2780 . 2 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
899898ralrimiva 3152 1 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  Vcvv 3488  ifcif 4548  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  chash 14379  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  sticksstones12  42115
  Copyright terms: Public domain W3C validator